# This unit test should be moved to a new # tests/test_guided_decoding directory. from transformers import AutoTokenizer import torch from aphrodite.modeling.outlines_logits_processors import ( RegexLogitsProcessor, JSONLogitsProcessor) TEST_SCHEMA = { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" }, "skills": { "type": "array", "items": { "type": "string", "maxLength": 10 }, "minItems": 3 }, "work history": { "type": "array", "items": { "type": "object", "properties": { "company": { "type": "string" }, "duration": { "type": "string" }, "position": { "type": "string" } }, "required": ["company", "position"] } } }, "required": ["name", "age", "skills", "work history"] } TEST_REGEX = r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" + \ r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)" def test_guided_logits_processors(): """Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor.""" tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') regex_LP = RegexLogitsProcessor(TEST_REGEX, tokenizer) json_LP = JSONLogitsProcessor(TEST_SCHEMA, tokenizer) regex_LP.init_state() token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {TEST_REGEX}") tensor = torch.rand(32000) original_tensor = torch.clone(tensor) regex_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) json_LP.init_state() token_ids = tokenizer.encode( f"Give an employee profile that fits this schema: {TEST_SCHEMA}") tensor = torch.rand(32000) original_tensor = torch.clone(tensor) json_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor)