"""Tests for the machete kernel. Run `pytest tests/kernels/test_machete_gemm.py`. """ import math from typing import Optional, Tuple import pytest import torch from aphrodite import _custom_ops as ops from aphrodite.platforms import current_platform from aphrodite.quantization.utils.quant_utils import (pack_rows, quantize_weights) from aphrodite.scalar_type import ScalarType, scalar_types from tests.kernels.utils import opcheck CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] MNK_SHAPES = [ (1, 128, 128), (1, 512, 1024), (1, 4096, 4096), (13, 8192, 4096), (26, 4096, 8192), (1, 4096, 4096), (257, 128, 4096), (257, 4224, 4160), (257, 4096, 4096), (64, 4096, 4096), (1024, 4096, 8192), (1024, 8192, 4096), ] ACT_TYPES = [torch.float16, torch.bfloat16] WTYPE_ZEROPOINTS = [ # GPTQ style (scalar_types.uint4b8, False), (scalar_types.uint8b128, False), # AWQ style (scalar_types.uint4, True), (scalar_types.uint8, True), ] # TODO: in future PR refactor this and `is_quant_method_supported` in the kernel # unit tests to a common utility function. Currently the use of # `is_quant_method_supported` conflates kernels with quantization methods # an assumption which is breaking down as quantizations methods can have # have kernels and some kernels support multiple quantization methods. IS_SUPPORTED_BY_GPU = current_platform.get_device_capability()[0] >= 9 def rand_data(shape, dtype=torch.float16): return 10 * (torch.rand(shape, dtype=dtype, device="cuda") - 0.3) def maybe_convert_zeropoints(zps: Optional[torch.Tensor], s: torch.Tensor): return zps if zps is None else -1 * s * (zps.to(s.dtype)) def machete_quantize_and_pack(w: torch.Tensor, wtype: ScalarType, group_size: int, zero_points: bool = False): assert wtype.is_integer(), "TODO: support floating point weights" w_ref, w_q, w_s, w_zp = quantize_weights( w, wtype, group_size, zero_points=zero_points, # to match how the kernel applies zps ref_zero_points_after_scales=True) w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape) w_q = w_q.t().contiguous().t() # convert to col major w_q_machete = ops.machete_prepack_B(w_q, wtype) opcheck(torch.ops._C.machete_prepack_B, (w_q, wtype)) return w_ref, w_q_machete, w_s, w_zp def machete_gemm_test_helper(a: torch.Tensor, b: torch.Tensor, wtype: ScalarType, group_size: int, zero_points: bool): w_ref, w_q_packed, w_s, w_zp = machete_quantize_and_pack( b, wtype, group_size, zero_points) output_ref = torch.matmul(a, w_ref) output = ops.machete_gemm( a=a, b_q=w_q_packed, b_type=wtype, b_scales=w_s, b_zeros=maybe_convert_zeropoints(w_zp, w_s), b_group_size=group_size, ) # Relax atol as our reduction dim becomes larger (more rounding error) # Relax atol when we have zeropoints since the way machete applies # zeropoints (after scales) causes noise around 0 atol = 1 if zero_points else min(5e-2 * math.sqrt(a.shape[1]), 1) torch.testing.assert_close(output, output_ref, rtol=1e-1, atol=atol) @pytest.mark.skipif(not IS_SUPPORTED_BY_GPU, reason="Machete is not supported on this GPU type.") @pytest.mark.parametrize("shape", MNK_SHAPES, ids=lambda x: "x".join(str(v) for v in x)) @pytest.mark.parametrize("atype", ACT_TYPES, ids=lambda x: str(x)) @pytest.mark.parametrize("wtype_zeropoints", WTYPE_ZEROPOINTS) @pytest.mark.parametrize("group_size", [128, None]) def test_machete_all_schedules(shape, atype: torch.dtype, wtype_zeropoints: Tuple[ScalarType, bool], group_size: Optional[int]): m, n, k = shape wtype, zero_points = wtype_zeropoints if group_size is not None and k % group_size != 0: return print(f"MNK = {m} {n} {k}") # Normalize group_size if group_size is None: group_size = k assert group_size <= k a = rand_data((m, k), atype) w = rand_data((k, n), atype) w_ref, w_q_machete, w_s, w_zp = machete_quantize_and_pack( w, wtype, group_size, zero_points) output_ref = torch.matmul(a, w_ref) for schedule in ops.machete_supported_schedules(wtype): print(f"Testing schedule {schedule}") output = ops.machete_gemm( a, b_q=w_q_machete, b_type=wtype, b_scales=w_s, b_zeros=maybe_convert_zeropoints(w_zp, w_s), b_group_size=group_size, schedule=schedule, ) opcheck(torch.ops._C.machete_gemm, (a, w_q_machete, wtype, w_s, maybe_convert_zeropoints( w_zp, w_s), group_size, None, None, None, schedule)) # Relax atol as our reduction dim becomes larger (more rounding error) # Relax atol when we have zeropoints since the way machete applies # zeropoints (after scales) causes noise around 0 atol = 1 if zero_points else min(5e-2 * math.sqrt(k), 1) torch.testing.assert_close(output, output_ref, rtol=1e-1, atol=atol),\ f"Schedule failed {schedule}" @pytest.mark.skipif(not IS_SUPPORTED_BY_GPU, reason="Machete is not supported on this GPU type.") @pytest.mark.parametrize("shape", MNK_SHAPES, ids=lambda x: "x".join(str(v) for v in x)) @pytest.mark.parametrize("atype", ACT_TYPES, ids=lambda x: str(x)) @pytest.mark.parametrize("wtype_zeropoints", WTYPE_ZEROPOINTS) @pytest.mark.parametrize("group_size", [128, None]) def test_machete_heuristic(shape, atype: torch.dtype, wtype_zeropoints: Tuple[ScalarType, bool], group_size: Optional[int]): m, n, k = shape wtype, zero_points = wtype_zeropoints if group_size is not None and k % group_size != 0: return # Normalize group_size if group_size is None: group_size = k assert group_size <= k a = rand_data((m, k), atype) b = rand_data((k, n), atype) machete_gemm_test_helper(a, b, wtype, group_size, zero_points) # Test working on other devices @pytest.mark.skipif(not IS_SUPPORTED_BY_GPU, reason="Machete is not supported on this GPU type.") @pytest.mark.parametrize("device", CUDA_DEVICES) def test_machete_devices(device: str): m, n, k = 512, 4096, 4096 wtype = scalar_types.uint4b8 group_size = 128 zero_points = False print(f"MNK = {m} {n} {k}, device = {device}") a = rand_data((m, k), torch.float16).to(device) b = rand_data((k, n), torch.float16).to(device) machete_gemm_test_helper(a, b, wtype, group_size, zero_points) # Test working with a subset of A and B @pytest.mark.skipif(not IS_SUPPORTED_BY_GPU, reason="Machete is not supported on this GPU type.") def test_machete_subset(): big_m, big_n, big_k = 1024, 1024, 1024 m, n, k = 512, 512, 512 wtype = scalar_types.uint4b8 group_size = 128 zero_points = False whole_a = rand_data((big_m, big_k), torch.float16) whole_b = rand_data((big_k, big_n), torch.float16) a = whole_a[0:m, 0:k] b = whole_b[0:k, 0:n] machete_gemm_test_helper(a, b, wtype, group_size, zero_points) # Test to make sure cuda graphs work class MacheteLayer(torch.nn.Module): def __init__(self, **kwargs): super().__init__() self.kwargs = kwargs def forward(self, a): return ops.machete_gemm(**self.kwargs) @pytest.mark.skipif(not IS_SUPPORTED_BY_GPU, reason="Machete is not supported on this GPU type.") def test_machete_cuda_graph(): m, n, k = 512, 4096, 4096 a = rand_data((m, k), torch.float16) b = rand_data((k, n), torch.float16) wtype = scalar_types.uint4b8 group_size = 128 zero_points = False w_ref, w_q_packed, w_s, w_zp = machete_quantize_and_pack( b, wtype, group_size, zero_points) # Construct a trivial model with a single layer that calls a machete kernel model = MacheteLayer( a=a, b_q=w_q_packed, b_type=wtype, b_scales=w_s, b_zeros=maybe_convert_zeropoints(w_zp, w_s), b_group_size=group_size, ) output_ref = torch.matmul(a, w_ref) # Run the model with a cuda graph stream = torch.cuda.Stream() with torch.cuda.stream(stream): g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): output = model(a) output.zero_() g.replay() # Relax atol as our reduction dim becomes larger (more rounding error) # Relax atol when we have zeropoints since the way machete applies # zeropoints (after scales) causes noise around 0 atol = 1 if zero_points else min(5e-2 * math.sqrt(k), 1) torch.testing.assert_close(output, output_ref, rtol=1e-1, atol=atol)