#include "cache.h" #include "cuda_utils.h" #include "ops.h" #include "core/registration.h" #include "quantization/quant_ops.h" #include // Note on op signatures: // The X_meta signatures are for the meta functions corresponding to op X. // They must be kept in sync with the signature for X. Generally, only // functions that return Tensors require a meta function. // // See the following links for detailed docs on op registration and function // schemas. // https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU/edit#heading=h.ptttacy8y1u9 // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#annotations TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Aphrodite custom ops // Attention ops // Compute the attention between an input query and the cached // keys/values using PagedAttention. ops.def( "paged_attention_v1(" " Tensor! out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," " str kv_cache_dtype, float k_scale, float v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step) -> ()"); ops.impl("paged_attention_v1", torch::kCUDA, &paged_attention_v1); // PagedAttention V2. ops.def( "paged_attention_v2(" " Tensor! out, Tensor! exp_sums, Tensor! max_logits," " Tensor! tmp_out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," " str kv_cache_dtype, float k_scale, float v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step) -> ()"); ops.impl("paged_attention_v2", torch::kCUDA, &paged_attention_v2); // Activation ops // Activation function used in SwiGLU. ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul); // Activation function used in GeGLU with `none` approximation. ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul); // Activation function used in GeGLU with `tanh` approximation. ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul); // GELU implementation used in GPT-2. ops.def("gelu_new(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_new", torch::kCUDA, &gelu_new); // Approximate GELU implementation. ops.def("gelu_fast(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_fast", torch::kCUDA, &gelu_fast); // Quick GELU implementation. ops.def("gelu_quick(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_quick", torch::kCUDA, &gelu_quick); // prepare_inputs advance_step ops.def( "advance_step_flashattn(int num_seqs, int num_queries, int block_size, " "Tensor! input_tokens, Tensor sampled_token_ids, " "Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, " "Tensor block_tables) -> ()"); ops.impl("advance_step_flashattn", torch::kCUDA, &advance_step_flashattn); ops.def( "advance_step_flashinfer(" " int num_seqs, int num_queries, int block_size," " Tensor! input_tokens, Tensor sampled_token_ids," " Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping," " Tensor block_tables, Tensor! paged_kv_indices," " Tensor! paged_kv_indptr, Tensor! paged_kv_last_page_len," " Tensor! block_table_bounds" ") -> ()"); ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer); // Layernorm // Apply Root Mean Square (RMS) Normalization to the input tensor. ops.def( "rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> " "()"); ops.impl("rms_norm", torch::kCUDA, &rms_norm); // In-place fused Add and RMS Normalization. ops.def( "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, " "float epsilon) -> ()"); ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm); // Rotary embedding // Apply GPT-NeoX or GPT-J style rotary embedding to query and key. ops.def( "rotary_embedding(Tensor positions, Tensor! query," " Tensor! key, int head_size," " Tensor cos_sin_cache, bool is_neox) -> ()"); ops.impl("rotary_embedding", torch::kCUDA, &rotary_embedding); // Apply GPT-NeoX or GPT-J style rotary embedding to query and key // (supports multiple loras). ops.def( "batched_rotary_embedding(Tensor positions, Tensor! query," " Tensor! key, int head_size," " Tensor cos_sin_cache, bool is_neox," " int rot_dim," " Tensor cos_sin_cache_offsets) -> ()"); ops.impl("batched_rotary_embedding", torch::kCUDA, &batched_rotary_embedding); // Quantization ops #ifndef USE_ROCM // Quantized GEMM for AQLM. ops.def( "aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, " "Tensor scales, int[] codebook_partition_sizes, Tensor? bias) " "-> Tensor"); ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm); // Decompression method for AQLM. ops.def( "aqlm_dequant(Tensor codes, Tensor codebooks, " "int[] codebook_partition_sizes) -> Tensor"); ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant); // Quantized GEMM for AWQ. ops.def( "awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, " "Tensor _zeros, int split_k_iters) -> Tensor"); ops.impl("awq_gemm", torch::kCUDA, &awq_gemm); // Dequantization for AWQ. ops.def( "awq_dequantize(Tensor _kernel, Tensor _scaling_factors, " "Tensor _zeros, int split_k_iters, int thx, int thy) -> Tensor"); ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize); // Dequantization for GGML. ops.def("ggml_dequantize(Tensor W, int type, int m, int n) -> Tensor"); ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize); // mmvq kernel for GGML. ops.def( "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, int row) " "-> Tensor"); ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8); // mmq kernel for GGML. ops.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, int row) -> Tensor"); ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8); // Note about marlin kernel 'workspace' arguments: // Technically these should be mutable since they are modified by the kernel. // But since they are set back to zero once the kernel is finished we can // hand wave and say that they have no net effect. // // The reason to mark 'workspace' as immutable is so that they don't interfere // with using ScalarType arguments in the ops. If they are marked as mutable, // pytorch throws an assert in // 'torch._higher_order_ops._register_effectful_op' that prevents these // kernels from being torch.compile'd. // See the following document for more info on custom types and ops that use // custom types: // https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA // Marlin (Dense) Optimized Quantized GEMM for GPTQ. ops.def( "marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " "Tensor! workspace, int size_m, int size_n, int size_k) -> Tensor"); ops.impl("marlin_gemm", torch::kCUDA, &marlin_gemm); // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ. ops.def( "gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, " "Tensor b_scales, Tensor workspace, " "__torch__.torch.classes._core_C.ScalarType b_q_type, " "int size_m, int size_n, int size_k) -> Tensor"); ops.impl("gptq_marlin_24_gemm", torch::kCUDA, &gptq_marlin_24_gemm); // gptq_marlin Optimized Quantized GEMM for GPTQ. ops.def( "gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " "Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, " "__torch__.torch.classes._core_C.ScalarType b_q_type, " "int size_m, int size_n, int size_k, bool is_k_full, " "bool has_zp, bool use_fp32_reduce, bool is_zp_float) -> Tensor"); ops.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm); // gptq_marlin repack from GPTQ. ops.def( "gptq_marlin_repack(Tensor b_q_weight, Tensor perm, " "SymInt size_k, SymInt size_n, int num_bits) -> Tensor"); ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack); ops.impl("gptq_marlin_repack", torch::kMeta, &gptq_marlin_repack_meta); // awq_marlin repack from AWQ. ops.def( "awq_marlin_repack(Tensor b_q_weight, SymInt size_k, " "SymInt size_n, int num_bits) -> Tensor"); ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack); ops.impl("awq_marlin_repack", torch::kMeta, &awq_marlin_repack_meta); // fp8_marlin Optimized Quantized GEMM for FP8 weight-only. ops.def( "fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " "Tensor! workspace, int num_bits, int size_m, int size_n, " "int size_k) -> Tensor"); ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm); #ifndef _WIN32 // marlin_qqq_gemm for QQQ. ops.def( "marlin_qqq_gemm(Tensor a, Tensor b_q_weight, " "Tensor s_tok, Tensor s_ch, Tensor s_group, " "Tensor! workspace, int size_m, int size_n, " "int size_k) -> Tensor"); ops.impl("marlin_qqq_gemm", torch::kCUDA, &marlin_qqq_gemm); // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column // quantization. ops.def( "cutlass_scaled_mm(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor? bias) -> ()"); ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm); // Check if cutlass scaled_mm is supported for CUDA devices of the given // capability ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool"); ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); // CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column // quantization. ops.def( "cutlass_scaled_mm_azp(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor azp_adj," " Tensor? azp, Tensor? bias) -> ()"); ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp); // Machete (Dense) Optimized Mixed Precision GEMM for Hopper. ops.def("machete_supported_schedules", &machete::supported_schedules); ops.def( "machete_gemm(Tensor A, Tensor B," " __torch__.torch.classes._core_C.ScalarType btype," " Tensor? scales, Tensor? zeros, int? group_size," " Tensor? C, float? alpha, float? beta, str? schedule)" "-> Tensor"); ops.impl("machete_gemm", torch::kCUDA, &machete::gemm); ops.def( "machete_prepack_B(Tensor B," " __torch__.torch.classes._core_C.ScalarType btype)" "-> Tensor"); ops.impl("machete_prepack_B", torch::kCUDA, &machete::prepack_B); ops.def("permute_cols(Tensor A, Tensor perm) -> Tensor"); ops.impl("permute_cols", torch::kCUDA, &permute_cols); #endif // QuIP# GEMV ops.def("quip_gemv(Tensor A, Tensor B, Tensor CB) -> Tensor", &e8p_mm_origorder); ops.impl("quip_gemv", torch::kCUDA, &e8p_mm_origorder); // QuIP# Decompress ops.def("quip_decompress(Tensor YIs, Tensor CB, Tensor Y) -> ()", &decompress_e8p_origorder); ops.impl("quip_decompress", torch::kCUDA, &decompress_e8p_origorder); // fp6_llm ops.def( "fp_eXmY_linear_forward_cuda(int EXPONENT, int MANTISSA," " Tensor _in_feats, Tensor _weights," " Tensor _scales, int splitK=1) -> Tensor"); ops.impl("fp_eXmY_linear_forward_cuda", torch::kCUDA, &fp_eXmY_linear_forward_cuda); // Sampling Kernels ops.def( "sampling_from_probs(Tensor probs, Tensor uniform_samples, bool " "deterministic) -> Tensor", &sampling_from_probs); ops.impl("sampling_from_probs", torch::kCUDA, &sampling_from_probs); ops.def( "top_k_sampling_from_probs(Tensor probs, Tensor uniform_samples," " Tensor? maybe_top_k_arr, int top_k_val," " bool deterministic) -> Tensor[]", &top_k_sampling_from_probs); ops.impl("top_k_sampling_from_probs", torch::kCUDA, &top_k_sampling_from_probs); ops.def( "min_p_sampling_from_probs(Tensor probs, Tensor uniform_samples," " Tensor? maybe_min_p_arr, float min_p_val," " bool deterministic) -> Tensor[]", &min_p_sampling_from_probs); ops.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs); ops.def( "top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples," " Tensor? maybe_top_p_arr, float top_p_val," " bool deterministic) -> Tensor[]", &top_p_sampling_from_probs); ops.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs); ops.def( "top_k_top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples," " Tensor? maybe_top_k_arr, float top_k_val," " Tensor? maybe_top_p_arr, float top_p_val," " bool deterministic) -> Tensor[]", &top_k_top_p_sampling_from_probs); ops.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs); ops.def( "top_k_renorm_prob(Tensor probs, Tensor? maybe_top_k_arr, int top_k_val) " "-> Tensor", &top_k_renorm_prob); ops.impl("top_k_renorm_prob", torch::kCUDA, &top_k_renorm_prob); ops.def( "top_p_renorm_prob(Tensor probs, Tensor? maybe_top_p_arr, float " "top_p_val) " "-> Tensor", &top_p_renorm_prob); ops.impl("top_p_renorm_prob", torch::kCUDA, &top_p_renorm_prob); ops.def( "top_k_mask_logits(Tensor logits, Tensor? maybe_top_k_arr, int " "top_k_val) -> Tensor", &top_k_mask_logits); ops.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits); #endif // Quantized GEMM for GPTQ. // Note: even though the C++ inferred schema is correct for this op, it seems // to prevent the meta function registry. ops.def( "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, " "Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, int bit) " "-> Tensor"); ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm); // Post processing for GPTQ. ops.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()"); ops.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle); // Quantized GEMM for SqueezeLLM. ops.def( "squeezellm_gemm(Tensor vec, Tensor mat, Tensor! mul, Tensor " "lookup_table) -> ()"); ops.impl("squeezellm_gemm", torch::kCUDA, &squeezellm_gemm); // Compute FP8 quantized tensor for given scaling factor. ops.def( "static_scaled_fp8_quant(Tensor! out, Tensor input, Tensor scale) -> ()"); ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant); // Compute dynamic-per-tensor FP8 quantized tensor and scaling factor. ops.def( "dynamic_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! scale) -> " "()"); ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant); // Compute dynamic-per-token FP8 quantized tensor and scaling factor. ops.def( "dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, " "Tensor! scale, Tensor? scale_ub) -> " "()"); ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); // Aligning the number of tokens to be processed by each expert such // that it is divisible by the block size. ops.def( "moe_align_block_size(Tensor topk_ids, int num_experts," " int block_size, Tensor! sorted_token_ids," " Tensor! experts_ids," " Tensor! num_tokens_post_pad) -> ()"); ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size); // Compute int8 quantized tensor for given scaling factor. /* Implementation: void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale); */ ops.def( "static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale) -> " "()"); ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant); // Compute int8 quantized tensor and scaling factor /* Implementation: void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scales); */ ops.def( "dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale) -> " "()"); ops.impl("dynamic_scaled_int8_quant", torch::kCUDA, &dynamic_scaled_int8_quant); #ifndef USE_ROCM // Mamba kernels ops.def( "selective_scan_fwd(Tensor! u, Tensor! delta," "Tensor! A, Tensor! B, Tensor! C," "Tensor? D_, Tensor? z_, Tensor? delta_bias_," "bool delta_softplus," "Tensor? index_, Tensor(a! -> *)? x) -> Tensor(a)[]"); ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd); ops.def( "causal_conv1d_update(Tensor! x," "Tensor! conv_state," "Tensor! weight," "Tensor? bias_," "bool silu_activation) -> Tensor"); ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update); ops.def( "causal_conv1d_fwd(Tensor! x, Tensor! weight," "Tensor? bias_," "Tensor? seq_idx_," "Tensor? seq_pos_idx_," "Tensor? initial_states_," "Tensor? final_states_out_," "bool silu_activation) -> Tensor"); ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd); #endif } TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { // Cache ops // Swap in (out) the cache blocks from src to dst. cache_ops.def( "swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()"); cache_ops.impl("swap_blocks", torch::kCUDA, &swap_blocks); // Copy the cache blocks from src to dst. cache_ops.def( "copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, " "Tensor block_mapping) -> ()"); cache_ops.impl("copy_blocks", torch::kCUDA, ©_blocks); // Reshape the key and value tensors and cache them. cache_ops.def( "reshape_and_cache(Tensor key, Tensor value," " Tensor! key_cache, Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," " float k_scale, float v_scale) -> ()"); cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache); // Reshape the key and value tensors and cache them. cache_ops.def( "reshape_and_cache_flash(Tensor key, Tensor value," " Tensor! key_cache," " Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," " float k_scale, float v_scale) -> ()"); cache_ops.impl("reshape_and_cache_flash", torch::kCUDA, &reshape_and_cache_flash); // Convert the key and value cache to fp8 data type. cache_ops.def( "convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, " "str kv_cache_dtype) -> ()"); cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8); } TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) { // Cuda utils // Gets the specified device attribute. cuda_utils.def("get_device_attribute(int attribute, int device_id) -> int"); cuda_utils.impl("get_device_attribute", &get_device_attribute); // Gets the maximum shared memory per block device attribute. cuda_utils.def( "get_max_shared_memory_per_block_device_attribute(int device_id) -> int"); cuda_utils.impl("get_max_shared_memory_per_block_device_attribute", &get_max_shared_memory_per_block_device_attribute); } #ifndef USE_ROCM TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) { // Custom all-reduce kernels custom_ar.def( "init_custom_ar(Tensor meta, Tensor rank_data, " "str[] handles, int[] offsets, int rank, " "bool full_nvlink) -> int"); custom_ar.impl("init_custom_ar", torch::kCUDA, &init_custom_ar); custom_ar.def( "should_custom_ar(Tensor inp, int max_size, int world_size, " "bool full_nvlink) -> bool"); custom_ar.impl("should_custom_ar", torch::kCUDA, &should_custom_ar); custom_ar.def("all_reduce_reg(int fa, Tensor inp, Tensor! out) -> ()"); custom_ar.impl("all_reduce_reg", torch::kCUDA, &all_reduce_reg); custom_ar.def( "all_reduce_unreg(int fa, Tensor inp, Tensor reg_buffer, Tensor! out) -> " "()"); custom_ar.impl("all_reduce_unreg", torch::kCUDA, &all_reduce_unreg); custom_ar.def("dispose", &dispose); custom_ar.def("meta_size", &meta_size); custom_ar.def( "register_buffer(int fa, Tensor t, str[] handles, " "int[] offsets) -> ()"); custom_ar.impl("register_buffer", torch::kCUDA, ®ister_buffer); custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta); custom_ar.def("register_graph_buffers", ®ister_graph_buffers); } #endif REGISTER_EXTENSION(TORCH_EXTENSION_NAME)