"""An OpenVINO worker class.""" from typing import Any, Dict, List, Optional, Tuple import openvino as ov import torch import torch.distributed from aphrodite.attention import get_attn_backend from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, ModelConfig, MultiModalConfig, ParallelConfig, SchedulerConfig) from aphrodite.common.sequence import ExecuteModelRequest from aphrodite.distributed import (broadcast_tensor_dict, ensure_model_parallel_initialized, init_distributed_environment) from aphrodite.modeling import set_random_seed from aphrodite.modeling.layers.sampler import SamplerOutput from aphrodite.worker.openvino_model_runner import OpenVINOModelRunner from aphrodite.worker.worker_base import LoraNotSupportedWorkerBase class OpenVINOCacheEngine: """Manages the KV cache for OpenVINO backend. This class is responsible for initializing and managing CPU KV caches. It also provides methods for performing KV cache operations, such as copying. """ def __init__( self, cache_config: CacheConfig, model_config: ModelConfig, parallel_config: ParallelConfig, device_config: DeviceConfig, ) -> None: assert device_config.device_type == "openvino" self.cache_config = cache_config self.model_config = model_config self.parallel_config = parallel_config self.head_size = model_config.get_head_size() if device_config.device.type == "cpu" and \ cache_config.cache_dtype == ov.Type.u8: # Scale, zero point and quantized data will be stored together. # The layout for per token per head: # |scale(f32)|zeropoint(f32)|quantized data(u8,idx_1)|quantized data(u8,idx_2)|...|quantized data(u8,idx_head_size)| # noqa: E501 # so, we have to extend head_size by 8, which is sizeof(float) # for scale and sizeof(float) for zeropoint self.head_size += 8 self.num_layers = model_config.get_num_layers(parallel_config) self.num_kv_heads = model_config.get_num_kv_heads(parallel_config) self.block_size = cache_config.block_size # Note: In CacheConfig, num_gpu_blocks actual is num_cpu_blocks # for OpenVINO backend, because we want to reuse KV cache management # in the scheduler. self.num_cpu_blocks = cache_config.num_gpu_blocks # Get attention backend. self.attn_backend = get_attn_backend( self.head_size, self.model_config.get_sliding_window(), self.model_config.dtype, self.cache_config.cache_dtype, self.block_size, self.model_config.is_attention_free(), ) # Initialize the cache. self.kv_cache: List[Tuple[ov.Tensor, ov.Tensor]] = self._allocate_kv_cache( self.num_cpu_blocks) def _allocate_kv_cache( self, num_blocks: int, ) -> List[Tuple[ov.Tensor, ov.Tensor]]: """Allocates KV cache.""" k_block_shape = v_block_shape = self.attn_backend.get_kv_cache_shape( num_blocks, self.block_size, self.num_kv_heads, self.head_size)[1:] kv_cache: List[Tuple[ov.Tensor, ov.Tensor]] = [] for _ in range(self.num_layers): key_blocks = ov.Tensor(self.cache_config.cache_dtype, k_block_shape) value_blocks = ov.Tensor(self.cache_config.cache_dtype, v_block_shape) kv_cache.append((key_blocks, value_blocks)) return kv_cache def swap_in(self, src_to_dst: Dict[int, int]) -> None: raise NotImplementedError( "Swap is not supported in OpenVINOCacheEngine.") def swap_out(self, src_to_dst: Dict[int, int]) -> None: raise NotImplementedError( "Swap is not supported in OpenVINOCacheEngine.") def copy(self, src_to_dsts: Dict[int, List[int]]) -> None: self.attn_backend.copy_blocks(self.kv_cache, src_to_dsts) @staticmethod def get_cache_block_size( block_size: int, cache_dtype: ov.Type, model_config: ModelConfig, parallel_config: ParallelConfig, ) -> int: head_size = model_config.get_head_size() num_kv_heads = model_config.get_num_kv_heads(parallel_config) num_layers = model_config.get_num_layers(parallel_config) if cache_dtype == ov.Type.u8: # Scale, zero point and quantized data will be stored together. # The layout for per token per head: # |scale(f32)|zeropoint(f32)|quantized data(u8,idx_1)|quantized data(u8,idx_2)|...|quantized data(u8,idx_head_size)| # noqa: E501 # so, we have to extend head_size by 8, which is sizeof(float) # for scale and sizeof(float) for zeropoint head_size += 8 key_cache_block = block_size * num_kv_heads * head_size value_cache_block = key_cache_block total = num_layers * (key_cache_block + value_cache_block) dtype_size = cache_dtype.size return dtype_size * total class OpenVINOWorker(LoraNotSupportedWorkerBase): """A worker class that executes the model on OpenVINO backend. Each worker is associated with a single OpenVINO device. The worker is responsible for maintaining the KV cache and executing the model on the OpenVINO backend. """ def __init__( self, model_config: ModelConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, device_config: DeviceConfig, cache_config: CacheConfig, load_config: LoadConfig, local_rank: int, rank: int, distributed_init_method: str, lora_config: Optional[LoRAConfig] = None, multimodal_config: Optional[MultiModalConfig] = None, kv_cache_dtype: Optional[ov.Type] = ov.Type.undefined, is_driver_worker: bool = False, ) -> None: self.model_config = model_config self.parallel_config = parallel_config self.parallel_config.rank = rank self.scheduler_config = scheduler_config self.device_config = device_config self.cache_config = cache_config self.load_config = load_config self.local_rank = local_rank self.rank = rank self.distributed_init_method = distributed_init_method self.lora_config = lora_config self.multimodal_config = multimodal_config self.is_driver_worker = is_driver_worker if self.is_driver_worker: assert self.rank == 0, "The driver worker must have rank 0." if self.model_config.trust_remote_code: # note: lazy import to avoid importing torch before initializing from aphrodite.common.utils import init_cached_hf_modules init_cached_hf_modules() self.model_runner = OpenVINOModelRunner( model_config, parallel_config, scheduler_config, device_config, cache_config, load_config=self.load_config, lora_config=self.lora_config, multimodal_config=self.multimodal_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker, ) # Uninitialized cache engine. Will be initialized by # initialize_cache. self.cache_engine: OpenVINOCacheEngine self.kv_cache: List[Tuple[ov.Tensor, ov.Tensor]] def init_device(self) -> None: self.init_distributed_environment() # Set random seed. set_random_seed(self.model_config.seed) def load_model(self): self.model_runner.load_model() def determine_num_available_blocks(self) -> Tuple[int, int]: """Determine the number of blocks available for the KV cache. This determines how many KV blocks can fit into the configured KV cache space. Note that since Aphrodite assumes a block resides on GPU if it can be modified, we return num_gpu_blocks=num_cpu_blocks and num_cpu_blocks=0. This allows us to reuse the scheduler of Aphrodite without generalizing it to different devices. """ # For OpenVINO backend, the block number will be calculated based on the # openvino_kvcache_space_bytes. cache_block_size = self.get_cache_block_size_bytes() num_cpu_blocks = int(self.cache_config.openvino_kvcache_space_bytes // cache_block_size) num_cpu_blocks = max(num_cpu_blocks, 0) # Note: To reuse the cache management procedure, # use cpu cache as 'gpu cache'. num_gpu_blocks = num_cpu_blocks num_cpu_blocks = 0 return num_gpu_blocks, num_cpu_blocks def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None: """Initialize the KV cache. Currently, swappable CPU memory is not supported. Since this worker does not support GPUs, we use the num_gpu_blocks to determine how many non-swappable CPU blocks to allocate. """ assert (num_cpu_blocks == 0 ), f"{type(self)} does not support swappable cache" # Note: To reuse the cache management procedure, # use cpu cache as 'gpu cache'. num_cpu_blocks = num_gpu_blocks self._validate_num_cpu_blocks(num_cpu_blocks) self.cache_config.num_gpu_blocks = num_cpu_blocks self.cache_config.num_cpu_blocks = 0 # Initialize the cache. self._init_cache_engine() def _validate_num_cpu_blocks(self, num_cpu_blocks: int) -> None: """Raise errors if the num_cpu_blocks is invalid.""" if num_cpu_blocks <= 0: raise ValueError( "No available memory for the cache blocks. " "Try increasing `APHRODITE_OPENVINO_KVCACHE_SPACE` when " "initializing the engine.") max_seq_len = self.cache_config.block_size * num_cpu_blocks if self.model_config.max_model_len > max_seq_len: raise ValueError( f"The model's max seq len ({self.model_config.max_model_len}) " "is larger than the maximum number of tokens that can be " f"stored in KV cache ({max_seq_len}). Try increasing " "`APHRODITE_OPENVINO_KVCACHE_SPACE` or decreasing " "`max_model_len` when initializing the engine.") def _init_cache_engine(self) -> None: self.cache_engine = OpenVINOCacheEngine( self.cache_config, self.model_config, self.parallel_config, self.device_config, ) self.kv_cache = self.cache_engine.kv_cache self.model_runner.block_size = self.cache_engine.block_size assert self.kv_cache is not None # Populate the cache to warmup the memory for key_cache, value_cache in self.kv_cache: key_cache.data[:] = 0 value_cache.data[:] = 0 def cache_copy( self, blocks_to_copy: List[Tuple[int, int]], ) -> None: self.cache_engine.copy(blocks_to_copy) # type: ignore @torch.inference_mode() def execute_model( self, execute_model_req: Optional[ExecuteModelRequest] = None, ) -> List[SamplerOutput]: if execute_model_req is None: seq_group_metadata_list = None else: seq_group_metadata_list = execute_model_req.seq_group_metadata_list if self.is_driver_worker: assert seq_group_metadata_list is not None num_seq_groups: int = len(seq_group_metadata_list) assert execute_model_req is not None blocks_to_copy = execute_model_req.blocks_to_copy assert len(execute_model_req.blocks_to_swap_in) == 0 assert len(execute_model_req.blocks_to_swap_out) == 0 data: Dict[str, Any] = { "num_seq_groups": num_seq_groups, "blocks_to_copy": execute_model_req.blocks_to_copy, } broadcast_tensor_dict(data, src=0) else: data = broadcast_tensor_dict(src=0) num_seq_groups = data["num_seq_groups"] blocks_to_copy = data["blocks_to_copy"] self.cache_copy(blocks_to_copy) # If there is no input, we don't need to execute the model. if num_seq_groups == 0: return [] output = self.model_runner.execute_model(seq_group_metadata_list, self.kv_cache) # OpenVINO worker only supports single-step execution. return [output] def init_distributed_environment(self) -> None: """Initialize the distributed environment.""" parallel_config = self.parallel_config rank = self.rank distributed_init_method = self.distributed_init_method init_distributed_environment( world_size=parallel_config.world_size, rank=rank, distributed_init_method=distributed_init_method, backend="gloo", ) # A small all_reduce for warmup. torch.distributed.all_reduce(torch.zeros(1).cpu()) ensure_model_parallel_initialized( parallel_config.tensor_parallel_size, parallel_config.pipeline_parallel_size, ) def get_cache_block_size_bytes(self) -> int: """Return the size in bytes of a single KV cache block.""" return OpenVINOCacheEngine.get_cache_block_size( self.cache_config.block_size, self.cache_config.cache_dtype, self.model_config, self.parallel_config, )