from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Type import torch import torch_xla.experimental.custom_kernel # Required to register custom ops. from aphrodite.attention.backends.abstract import (AttentionBackend, AttentionImpl, AttentionMetadata, AttentionType) from aphrodite.attention.backends.utils import CommonAttentionState class PallasAttentionBackend(AttentionBackend): @staticmethod def get_impl_cls() -> Type["PallasAttentionBackendImpl"]: return PallasAttentionBackendImpl @staticmethod def get_metadata_cls() -> Type["PallasMetadata"]: return PallasMetadata @staticmethod def get_state_cls() -> Type["CommonAttentionState"]: return CommonAttentionState @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return (num_kv_heads, num_blocks, block_size, head_size) @staticmethod def swap_blocks( src_kv_cache: torch.Tensor, dst_kv_cache: torch.Tensor, src_to_dst: torch.Tensor, ) -> None: raise RuntimeError("swap_blocks is not used for the TPU backend.") @torch.compile(backend="openxla") @staticmethod def copy_blocks( kv_caches: List[Tuple[torch.Tensor, torch.Tensor]], src_to_dists: Tuple[torch.Tensor, torch.Tensor], ) -> None: src_indices, dst_indices = src_to_dists for k_cache, v_cache in kv_caches: torch.ops.xla.dynamo_set_buffer_donor_(k_cache, True) k_cache[:, dst_indices] = k_cache[:, src_indices] torch.ops.xla.dynamo_set_buffer_donor_(v_cache, True) v_cache[:, dst_indices] = v_cache[:, src_indices] @dataclass class PallasMetadata(AttentionMetadata): # Currently, input sequences can only contain all prefills # or all decoding. block_tables: Optional[torch.Tensor] = None context_lens: Optional[torch.Tensor] = None @property def prefill_metadata(self) -> Optional["PallasMetadata"]: if self.num_prefills == 0: return None assert self.num_decode_tokens == 0 assert self.block_tables is None assert self.context_lens is None return self @property def decode_metadata(self) -> Optional["PallasMetadata"]: if self.num_decode_tokens == 0: return None assert self.num_prefills == 0 assert self.num_prefill_tokens == 0 assert self.block_tables is not None assert self.context_lens is not None return self class PallasAttentionBackendImpl(AttentionImpl): def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: Optional[List[float]], sliding_window: Optional[int], kv_cache_dtype: str, blocksparse_params: Optional[Dict[str, Any]] = None, logits_soft_cap: Optional[float] = None, ) -> None: self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads assert self.num_heads % self.num_kv_heads == 0 self.num_queries_per_kv = self.num_heads // self.num_kv_heads if head_size % 128 != 0: raise NotImplementedError("Head size must be a multiple of 128.") if alibi_slopes is not None: raise NotImplementedError("Alibi slopes is not supported.") if sliding_window is not None: raise NotImplementedError("Sliding window is not supported.") if kv_cache_dtype != "auto": raise NotImplementedError("FP8 KV cache dtype is not supported.") if blocksparse_params is not None: raise NotImplementedError("Blocksparse is not supported.") if logits_soft_cap is not None: raise NotImplementedError( "Attention logits soft-capping is not supported.") if torch_xla.tpu.version() < 4: raise NotImplementedError("TPU version must be 4 or higher.") self.megacore_mode = None tpu_env = torch_xla.tpu.get_tpu_env() tpu_type = (tpu_env.get("ACCELERATOR_TYPE", None) or tpu_env.get("TYPE", None) or tpu_env.get("TPU_ACCELERATOR_TYPE", None)) assert tpu_type is not None tpu_type = tpu_type.lower() if "lite" not in tpu_type: if self.num_kv_heads % 2 == 0: self.megacore_mode = "kv_head" else: # NOTE: If the batch size is not a multiple of 2, the # megacore mode will be None. self.megacore_mode = "batch" def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: Tuple[Optional[torch.Tensor], Optional[torch.Tensor]], attn_metadata: PallasMetadata, k_scale: float = 1.0, v_scale: float = 1.0, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: """Forward pass with Pallas attention. Args: query: shape = [batch_size, seq_len, num_heads * head_size] key: shape = [batch_size, seq_len, num_kv_heads * head_size] value: shape = [batch_size, seq_len, num_kv_heads * head_size] key_cache = [num_kv_heads, num_blocks, block_size, head_size] value_cache = [num_kv_heads, num_blocks, block_size, head_size] attn_metadata: Metadata for attention. Returns: shape = [batch_size, seq_len, num_heads * head_size] """ assert k_scale == 1.0 and v_scale == 1.0 if attn_type != AttentionType.DECODER: raise NotImplementedError("Encoder self-attention and " "encoder/decoder cross-attention " "are not implemented for " "PallasAttentionBackendImpl") batch_size, seq_len, hidden_size = query.shape query = query.view(batch_size, seq_len, self.num_heads, self.head_size) key = key.view(batch_size, seq_len, self.num_kv_heads, self.head_size) value = value.view(batch_size, seq_len, self.num_kv_heads, self.head_size) if kv_cache[0] is not None: slot_mapping = attn_metadata.slot_mapping key_cache, value_cache = kv_cache write_to_kv_cache(key, value, key_cache, value_cache, slot_mapping) query = query * self.scale if attn_metadata.num_prefills > 0: assert seq_len % 16 == 0, ( "Pallas FlashAttention kernel requires seq_len to be a " f"multiple of 16 but got {seq_len}") # Handle GQA/MQA. if self.num_kv_heads != self.num_heads: key = key.repeat_interleave(self.num_queries_per_kv, dim=-2) key = key.view(batch_size, seq_len, self.num_heads, self.head_size) value = value.repeat_interleave(self.num_queries_per_kv, dim=-2) value = value.view(batch_size, seq_len, self.num_heads, self.head_size) # FlashAttention requires [batch_size, num_heads, seq_len, d_model] # while the input is [batch_size, seq_len, num_heads, d_model]. # Permute the input to match the required format. output = torch.ops.xla.flash_attention( query.permute(0, 2, 1, 3), key.permute(0, 2, 1, 3), value.permute(0, 2, 1, 3), True, ) output = output.permute(0, 2, 1, 3) else: # Decoding run. assert kv_cache is not None pages_per_compute_block = 16 # TODO: Tune this value. if self.megacore_mode == "batch" and batch_size % 2 != 0: megacore_mode = None else: megacore_mode = self.megacore_mode # NOTE: A temporary workaround to avoid the error: # "xla::paged_attention() Expected a value of type 'str' for # argument 'megacore_mode' but instead found type 'NoneType'." if megacore_mode is not None: output = torch.ops.xla.paged_attention( query.squeeze(dim=1), key_cache, value_cache, attn_metadata.context_lens, attn_metadata.block_tables, pages_per_compute_block, megacore_mode=megacore_mode, ) else: output = torch.ops.xla.paged_attention( query.squeeze(dim=1), key_cache, value_cache, attn_metadata.context_lens, attn_metadata.block_tables, pages_per_compute_block, ) # Reshape the output tensor. return output.reshape(batch_size, seq_len, hidden_size) def write_to_kv_cache( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slot_mapping: torch.Tensor, ) -> None: torch.ops.xla.dynamo_set_buffer_donor_(key_cache, True) torch.ops.xla.dynamo_set_buffer_donor_(value_cache, True) key = key.flatten(0, 2) value = value.flatten(0, 2) key_cache = key_cache.flatten(0, 2) value_cache = value_cache.flatten(0, 2) key_cache.index_copy_(0, slot_mapping, key) value_cache.index_copy_(0, slot_mapping, value)