from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Tuple, Type import torch from aphrodite.attention.backends.abstract import (AttentionBackend, AttentionImpl, AttentionMetadata, AttentionType) from aphrodite.attention.backends.utils import (CommonAttentionState, CommonMetadataBuilder) from aphrodite.attention.ops.blocksparse_attention.interface import ( LocalStridedBlockSparseAttn, get_head_sliding_step) from aphrodite.attention.ops.paged_attn import PagedAttention from aphrodite.distributed import (get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) @dataclass class BlocksparseParams: max_seqlen: int # Num q heads per tensor-parallel rank/partition num_heads: int # per TP partition # Num kv heads per tensor-parallel rank/partition num_kv_heads: int # block size used for blocksparse attention. # This is the block_size used in `local_blocks`, `vert_stride`. block_size: int # Number of blocks for local attention, i.e., number of # local attended tokens / `sparse_block_size` local_blocks: int # Attend to one block per every `vert_stride` blocks. # Controlling the sparsity vert_stride: int """ If to use the same vertical stride offset for all heads, i.e., attend to the same block of tokens on all heads. By default, it is False, i.e., attention on the non-local blocks depends on the `head_idx`, that is on blocks satisfying `(block_idx + head_idx * head_sliding_step + 1) % vert_stride == 0` where `head_sliding_step=max(1, int(vert_stride / num_total_heads))`, `block_idx = position_id // sparse_block_size`. See `..ops.blocksparse_attention.utils:get_sparse_attn_mask` for more detail. """ homo_head: bool = False # If within a group, the kv offsets that each q attends is the same or no. homo_head_group: bool = False # Decided by homo_head and homo_head group head_sliding_step: int = field(init=False) # range of q heads to for a TP rank active_head_range: Tuple = field(init=False) def __post_init__(self): assert self.block_size > 0 assert self.local_blocks >= 0 assert self.vert_stride >= 1 assert self.num_heads % self.num_kv_heads == 0 tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() total_heads = tp_size * self.num_heads total_kv_heads = tp_size * self.num_kv_heads if self.homo_head: self.head_sliding_step = 0 elif self.homo_head_group: head_sliding_step = get_head_sliding_step(total_kv_heads, self.vert_stride) # negative indicates sliding along kv heads, i.e., homo q group self.head_sliding_step = -head_sliding_step else: self.head_sliding_step = get_head_sliding_step( total_heads, self.vert_stride) self.active_head_range = ( tp_rank * self.num_heads, (tp_rank + 1) * self.num_heads, ) class BlocksparseFlashAttentionBackend(AttentionBackend): @staticmethod def get_impl_cls() -> Type["BlocksparseFlashAttentionImpl"]: return BlocksparseFlashAttentionImpl @staticmethod def get_metadata_cls() -> Type["AttentionMetadata"]: return BlocksparseFlashAttentionMetadata @staticmethod def get_builder_cls() -> Type["BlocksparseFlashAttentionMetadataBuilder"]: return BlocksparseFlashAttentionMetadataBuilder @staticmethod def get_state_cls() -> Type["CommonAttentionState"]: return CommonAttentionState @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return PagedAttention.get_kv_cache_shape(num_blocks, block_size, num_kv_heads, head_size) @staticmethod def swap_blocks( src_kv_cache: torch.Tensor, dst_kv_cache: torch.Tensor, src_to_dst: Dict[int, int], ) -> None: PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst) @staticmethod def copy_blocks( kv_caches: List[torch.Tensor], src_to_dists: Dict[int, List[int]], ) -> None: PagedAttention.copy_blocks(kv_caches, src_to_dists) @dataclass class BlocksparseFlashAttentionMetadata(AttentionMetadata): """A copy of Metadata for FlashAttentionBackend, to avoid having to install flash_attn. NOTE: Any python object stored here is not updated when it is cuda-graph replayed. If you have values that need to be changed dynamically, it should be stored in tensor. The tensor has to be updated from `CUDAGraphRunner.forward` API. """ # (batch_size,). The sequence length per sequence. Sequence length means # the computed tokens + new tokens None if it is a decoding. seq_lens: Optional[List[int]] # seq_lens stored as a tensor. seq_lens_tensor: Optional[torch.Tensor] # NOTE(sang): Definition of context_len, query_len, and seq_len. # |---------- N-1 iteration --------| # |---------------- N iteration ---------------------| # |- tokenA -|......................|-- newTokens ---| # |---------- context_len ----------| # |-------------------- seq_len ----------------------| # |-- query_len ---| # Maximum query length in the batch. None for decoding. max_query_len: Optional[int] # Maximum sequence length among prefill batch. 0 if there are decoding # requests only. max_prefill_seq_len: int # Maximum sequence length among decode batch. 0 if there are prefill # requests only. max_decode_seq_len: int # (batch_size + 1,). The cumulative subquery lengths of the sequences in # the batch, used to index into subquery. E.g., if the subquery length # is [4, 6], it is [0, 4, 10]. query_start_loc: Optional[torch.Tensor] # (batch_size + 1,). The cumulative sequence lengths of the sequences in # the batch, used to index into sequence. E.g., if the sequence length is # [4, 6], it is [0, 4, 10]. seq_start_loc: Optional[torch.Tensor] # (batch_size,) A tensor of context lengths (tokens that are computed # so far). context_lens_tensor: Optional[torch.Tensor] # (batch_size, max_blocks_per_seq). # Block addresses per sequence. (Seq id -> list of physical block) # E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks # in the kv cache. Each block can contain up to block_size tokens. # 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph # captured. block_tables: Optional[torch.Tensor] # Whether or not if cuda graph is enabled. # Cuda-graph is currently enabled for decoding only. # TODO: Move `use_cuda_graph` out since it's unrelated to attention. use_cuda_graph: bool _cached_prefill_metadata: Optional[ "BlocksparseFlashAttentionMetadata"] = None _cached_decode_metadata: Optional[ "BlocksparseFlashAttentionMetadata"] = None @property def prefill_metadata( self) -> Optional["BlocksparseFlashAttentionMetadata"]: if self.num_prefills == 0: return None if self._cached_prefill_metadata is not None: return self._cached_prefill_metadata assert self.seq_lens is not None assert self.seq_lens_tensor is not None assert self.query_start_loc is not None assert self.context_lens_tensor is not None assert self.block_tables is not None assert self.seq_start_loc is not None self._cached_prefill_metadata = BlocksparseFlashAttentionMetadata( num_prefills=self.num_prefills, num_prefill_tokens=self.num_prefill_tokens, num_decode_tokens=0, slot_mapping=self.slot_mapping[:self.num_prefill_tokens], seq_lens=self.seq_lens[:self.num_prefills], seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills], max_query_len=self.max_query_len, max_prefill_seq_len=self.max_prefill_seq_len, max_decode_seq_len=0, query_start_loc=self.query_start_loc[:self.num_prefills + 1], seq_start_loc=self.seq_start_loc[:self.num_prefills + 1], context_lens_tensor=self.context_lens_tensor[:self.num_prefills], block_tables=self.block_tables[:self.num_prefills], use_cuda_graph=False, ) return self._cached_prefill_metadata @property def decode_metadata(self) -> Optional["BlocksparseFlashAttentionMetadata"]: if self.num_decode_tokens == 0: return None if self._cached_decode_metadata is not None: return self._cached_decode_metadata assert self.block_tables is not None assert self.seq_lens_tensor is not None self._cached_decode_metadata = BlocksparseFlashAttentionMetadata( num_prefills=0, num_prefill_tokens=0, num_decode_tokens=self.num_decode_tokens, slot_mapping=self.slot_mapping[self.num_prefill_tokens:], seq_lens=None, seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:], max_query_len=None, max_prefill_seq_len=0, max_decode_seq_len=self.max_decode_seq_len, query_start_loc=None, seq_start_loc=None, context_lens_tensor=None, block_tables=self.block_tables[self.num_prefills:], use_cuda_graph=self.use_cuda_graph, ) return self._cached_decode_metadata class BlocksparseFlashAttentionMetadataBuilder( CommonMetadataBuilder[BlocksparseFlashAttentionMetadata]): _metadata_cls = BlocksparseFlashAttentionMetadata class BlocksparseFlashAttentionImpl(AttentionImpl): """ If the input tensors contain prompt tokens, the layout is as follows: |<--------------- num_prompt_tokens -------------->| |<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->| Otherwise, the layout is as follows: |<------------------ num_generation_tokens (M) ----------------->| |<--generation_0-->|..........|<--generation_M-1-->|<--padding-->| Generation tokens can contain padding when cuda-graph is used. Currently, prompt tokens don't contain any padding. The prompts might have different lengths, while the generation tokens always have length 1. """ def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: Optional[List[float]], sliding_window: Optional[int], kv_cache_dtype: str, blocksparse_params: Optional[Dict[str, Any]] = None, logits_soft_cap: Optional[float] = None, ) -> None: assert blocksparse_params is not None assert alibi_slopes is None, ValueError( "Alibi not support for blocksparse flash attention.") assert sliding_window is None, ValueError( "sliding_window is invalid for blocksparse attention.") assert logits_soft_cap is None, ValueError( "logits_soft_cap is invalid for blocksparse attention.") if "num_heads" not in blocksparse_params: blocksparse_params["num_heads"] = num_heads if "num_kv_heads" not in blocksparse_params: blocksparse_params["num_kv_heads"] = num_kv_heads or num_heads self.blocksparse_params = BlocksparseParams(**blocksparse_params) self.kv_cache_dtype = kv_cache_dtype self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) self.alibi_slopes = alibi_slopes self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads assert self.num_heads % self.num_kv_heads == 0 self.num_queries_per_kv = self.num_heads // self.num_kv_heads self.local_blocks = self.blocksparse_params.local_blocks self.vert_stride = self.blocksparse_params.vert_stride self.sparse_block_size = self.blocksparse_params.block_size self.head_sliding_step = self.blocksparse_params.head_sliding_step suppored_head_sizes = PagedAttention.get_supported_head_sizes() if head_size not in suppored_head_sizes: raise ValueError( f"Head size {head_size} is not supported by PagedAttention. " f"Supported head sizes are: {suppored_head_sizes}.") self.tp_size = get_tensor_model_parallel_world_size() self.tp_rank = get_tensor_model_parallel_rank() total_num_heads = num_heads * self.tp_size self.bs_attn = LocalStridedBlockSparseAttn( total_num_heads, self.blocksparse_params.max_seqlen, self.blocksparse_params.local_blocks, self.blocksparse_params.vert_stride, self.blocksparse_params.block_size, homo_head=self.blocksparse_params.homo_head, active_head_range=self.blocksparse_params.active_head_range, ) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: BlocksparseFlashAttentionMetadata, k_scale: float = 1.0, v_scale: float = 1.0, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: """Forward pass with FlashAttention and PagedAttention. Args: query: shape = [num_tokens, num_heads * head_size] key: shape = [num_tokens, num_kv_heads * head_size] value: shape = [num_tokens, num_kv_heads * head_size] kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] attn_metadata: Metadata for attention. Returns: shape = [num_tokens, num_heads * head_size] """ if attn_type != AttentionType.DECODER: raise NotImplementedError("Encoder self-attention and " "encoder/decoder cross-attention " "are not implemented for " "BlocksparseFlashAttentionImpl") num_tokens, hidden_size = query.shape # Reshape the query, key, and value tensors. query = query.view(-1, self.num_heads, self.head_size) key = key.view(-1, self.num_kv_heads, self.head_size) value = value.view(-1, self.num_kv_heads, self.head_size) if kv_cache is not None: key_cache, value_cache = PagedAttention.split_kv_cache( kv_cache, self.num_kv_heads, self.head_size) # Reshape the input keys and values and store them in the cache. # If kv_cache is not provided, the new key and value tensors are # not cached. This happens during the initial memory profiling run. PagedAttention.write_to_paged_cache( key, value, key_cache, value_cache, attn_metadata.slot_mapping, self.kv_cache_dtype, k_scale, v_scale, ) if prefill_meta := attn_metadata.prefill_metadata: # Prompt run. # normal attention # When block_tables are not filled, it means q and k are the # prompt, and they have the same length. assert kv_cache is None \ or prefill_meta.block_tables is None \ or prefill_meta.block_tables.numel() == 0, \ "Does not support prefix-enabled attention." output = self.bs_attn( q=query, k=key, v=value, cu_seqlens_q=prefill_meta.seq_start_loc, cu_seqlens_k=prefill_meta.seq_start_loc, sm_scale=self.scale, ) if decode_meta := attn_metadata.decode_metadata: # Decoding run. output = PagedAttention.forward_decode( query, key_cache, value_cache, decode_meta.block_tables, decode_meta.seq_lens_tensor, self.blocksparse_params.max_seqlen, self.kv_cache_dtype, self.num_kv_heads, self.scale, self.alibi_slopes, k_scale, v_scale, tp_rank=self.tp_rank, blocksparse_local_blocks=self.local_blocks, blocksparse_vert_stride=self.vert_stride, blocksparse_block_size=self.sparse_block_size, blocksparse_head_sliding_step=self.head_sliding_step, ) # Reshape the output tensor. return output.view(num_tokens, hidden_size)