import torch import torch.distributed as dist from torch.distributed import ProcessGroup from aphrodite.platforms import current_platform if current_platform.is_tpu(): import ray import torch_xla.core.xla_model as xm import torch_xla.runtime as xr from torch_xla._internal import pjrt class TpuCommunicator: def __init__(self, group: ProcessGroup): if not current_platform.is_tpu(): self.disabled = True return self.disabled = False # NOTE: When using TP > 1 on TPUs, every TPU on the same node # must be used together. Therefore, the local rank and world # size can be simply calculated as follows. global_rank = dist.get_rank(group) global_world_size = dist.get_world_size(group) num_nodes = len(ray.nodes()) local_world_size = global_world_size // num_nodes local_rank = global_rank % local_world_size pjrt.initialize_multiprocess(local_rank, local_world_size) xr._init_world_size_ordinal() def all_reduce(self, x: torch.Tensor) -> torch.Tensor: return xm.all_reduce(xm.REDUCE_SUM, x) def all_gather(self, x: torch.Tensor, dim: int = -1) -> torch.Tensor: assert dim == -1, "TPUs only support dim=-1 for all-gather." return xm.all_gather(x, dim=dim)