from functools import lru_cache import torch from loguru import logger from PIL import Image from aphrodite.common.config import ModelConfig from aphrodite.common.utils import is_list_of from aphrodite.inputs.registry import InputContext from aphrodite.transformers_utils.image_processor import get_image_processor from .base import MultiModalData, MultiModalInputs, MultiModalPlugin cached_get_image_processor = lru_cache(get_image_processor) class ImagePlugin(MultiModalPlugin): """Plugin for image data.""" def get_data_key(self) -> str: return "image" def _get_hf_image_processor(self, model_config: ModelConfig): return cached_get_image_processor( model_config.model, trust_remote_code=model_config.trust_remote_code) def _default_input_mapper( self, ctx: InputContext, data: MultiModalData[object], ) -> MultiModalInputs: model_config = ctx.model_config # PIL image if isinstance(data, Image.Image) or is_list_of(data, Image.Image): image_processor = self._get_hf_image_processor(model_config) if image_processor is None: raise RuntimeError("No HuggingFace processor is available " "to process the image object") try: batch_data = image_processor \ .preprocess(data, return_tensors="pt") \ .data except Exception: logger.error("Failed to process image (%s)", data) raise return MultiModalInputs(batch_data) # Image embedding elif isinstance(data, torch.Tensor) or is_list_of(data, torch.Tensor): return MultiModalInputs({"image_embeds": data}) raise TypeError(f"Invalid image type: {type(data)}") def _default_max_multimodal_tokens(self, ctx: InputContext) -> int: return 3000