from abc import ABC, abstractmethod from typing import List, Optional import torch import torch.nn.functional as F from loguru import logger from torch import nn from torch.nn.parameter import Parameter from aphrodite.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, split_tensor_along_last_dim, tensor_model_parallel_all_gather, tensor_model_parallel_all_reduce) from aphrodite.modeling.utils import set_weight_attrs def adjust_marlin_shard(param, shard_size, shard_offset): marlin_tile_size = getattr(param, "marlin_tile_size", None) if marlin_tile_size is None: return shard_size, shard_offset return shard_size * marlin_tile_size, shard_offset * marlin_tile_size class LinearMethodBase(ABC): """Base class for different (maybe quantized) linear methods.""" @abstractmethod def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): """Create weights for a linear layer. The weights will be set as attributes of the layer. Args: layer: The layer that is using the LinearMethodBase factory. input_size_per_partition: Size of the weight input dim on rank X. output_partition_sizes: Sizes of the output dim of each logical weight on rank X. E.g., output_partition_sizes for QKVLinear is a list contains the width of Wq, Wk, Wv on rank X. input_size: Size of the input dim of the weight across all ranks. output_size: Size of the output dim of the weight across all ranks. params_dtype: Datatype of the parameters. """ raise NotImplementedError @abstractmethod def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply the weights in layer to the input tensor. Expects create_weights to have been called before on the layer.""" raise NotImplementedError def process_weights_after_loading(self, layer: nn.Module) -> None: """Process the weight after loading. This can be used for example, to transpose weights for computation. """ return class UnquantizedLinearMethod(LinearMethodBase): """Linear method without quantization. Args: separate_bias_add: If true, add bias separately after matrix multiplication. """ def __init__(self, separate_bias_add: bool = False): self.separate_bias_add = separate_bias_add def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): output_size_per_partition = sum(output_partition_sizes) weight = Parameter(torch.empty(output_size_per_partition, input_size_per_partition, dtype=params_dtype), requires_grad=False) set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0}) layer.register_parameter("weight", weight) set_weight_attrs(weight, extra_weight_attrs) def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: weight = layer.weight if self.separate_bias_add: if bias is not None: return F.linear(x, weight) + bias return F.linear(x, weight) return F.linear(x, weight, bias) class ReplicatedLinear(torch.nn.Module): """Replicated linear layer. Args: input_size: input dimension of the linear layer. output_size: output dimension of the linear layer. bias: If true, add bias. skip_bias_add: If true, skip adding bias but instead return it. params_dtype: Data type for the parameters. linear_method: (Maybe quantized) linear method. """ def __init__( self, input_size: int, output_size: int, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.skip_bias_add = skip_bias_add if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype if linear_method is None: linear_method = UnquantizedLinearMethod() self.linear_method = linear_method self.linear_method.create_weights(self, self.input_size, [self.output_size], self.input_size, self.output_size, self.params_dtype) if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=self.params_dtype)) set_weight_attrs(self.bias, {"output_dim": 0}) else: self.register_parameter("bias", None) def forward(self, x: torch.Tensor) -> torch.Tensor: bias = self.bias if not self.skip_bias_add else None output = self.linear_method.apply_weights(self, x, bias) output_bias = self.bias if self.skip_bias_add else None return output, output_bias class ColumnParallelLinear(torch.nn.Module): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Args: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. gather_output: If true, call all-gather on output and make Y available to all GPUs, otherwise, every GPU will have its output which is Y_i = XA_i skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. linear_method: (Maybe quantized) linear method. output_sizes: list of output sizes packed into one output, like for QKV the list would be size 3. """ def __init__( self, input_size: int, output_size: int, bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, linear_method: Optional[LinearMethodBase] = None, output_sizes: Optional[List[int]] = None, ): super().__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.gather_output = gather_output # Divide the weight matrix along the last dimension. tp_size = get_tensor_model_parallel_world_size() self.output_size_per_partition = divide(output_size, tp_size) self.skip_bias_add = skip_bias_add if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype if linear_method is None: linear_method = UnquantizedLinearMethod() if output_sizes is None: output_sizes = [output_size] self.linear_method = linear_method self.linear_method.create_weights(self, self.input_size, [x // tp_size for x in output_sizes], self.input_size, self.output_size, self.params_dtype, weight_loader=self.weight_loader) if bias: self.bias = Parameter( torch.empty(self.output_size_per_partition, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() output_dim = getattr(param, "output_dim", None) param_data = param.data if output_dim is not None: shard_size = param_data.shape[output_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def forward(self, input_): bias = self.bias if not self.skip_bias_add else None # Matrix multiply. output_parallel = self.linear_method.apply_weights(self, input_, bias) if self.gather_output: # All-gather across the partitions. output = tensor_model_parallel_all_gather(output_parallel) else: output = output_parallel output_bias = self.bias if self.skip_bias_add else None return output, output_bias class MergedColumnParallelLinear(ColumnParallelLinear): """Packed linear layers with column parallelism. Similar to ColumnParallelLinear, but the weight matrix is concatenated along the output dimension. When the weight matrix is loaded, the different partitions are sharded separately. Args: input_size: input dimension of the linear layer. output_sizes: list of output dimensions of the linear layer. bias: If true, add bias. gather_output: If true, call all-gather on output and make the output available to all GPUs, otherwise, every GPU will have its own output. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. linear_method: (Maybe quantized) linear method. """ def __init__( self, input_size: int, output_sizes: List[int], bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, linear_method: Optional[LinearMethodBase] = None, ): self.output_sizes = output_sizes tp_size = get_tensor_model_parallel_world_size() assert all(output_size % tp_size == 0 for output_size in output_sizes) super().__init__(input_size, sum(output_sizes), bias, gather_output, skip_bias_add, params_dtype, linear_method, self.output_sizes) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[int] = None): param_data = param.data output_dim = getattr(param, "output_dim", None) is_metadata = getattr(param, "is_metadata", False) if loaded_shard_id is None: # Loaded weight is already packed. if output_dim is None: assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) return current_shard_offset = 0 shard_offsets = [] for i, output_size in enumerate(self.output_sizes): shard_offsets.append((i, current_shard_offset, output_size)) current_shard_offset += output_size packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # If marlin, we need to adjust the offset and size to # account for the tiling. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return assert loaded_shard_id < len(self.output_sizes) tp_rank = get_tensor_model_parallel_rank() tp_size = get_tensor_model_parallel_world_size() if output_dim is not None: shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size shard_size = self.output_sizes[loaded_shard_id] // tp_size # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # If marlin, we need to adjust the offset and size to # account for the tiling. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) param_data = param_data.narrow(output_dim, shard_offset, shard_size) start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_offset = loaded_shard_id * shard_size param_data = param_data.narrow(0, shard_offset, shard_size) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "MergedColumnParallelLinear, assume the weight is " "the same for all partitions.") assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class QKVParallelLinear(ColumnParallelLinear): """Linear layers for the attention's QKV transformation. Linear layers for the linear transformation of the query, key, and value vectors in the attention layer. The weight matrix is concatenated along the output dimension. The layer is parallelized along the head dimension. When the number of key/value heads is smaller than the number of query heads (e.g., multi-query/grouped-query attention), the key/value head may be replicated while the query heads are partitioned. Args: hidden_size: input hidden state size of the transformer. head_size: size of each attention head. total_num_heads: total number of attention query heads. total_num_kv_heads: total number of attention key/value heads. If None, assume total_num_kv_heads = total_num_heads. bias: If true, add bias. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. linear_method: (Maybe quantized) linear method. """ def __init__( self, hidden_size: int, head_size: int, total_num_heads: int, total_num_kv_heads: Optional[int] = None, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, linear_method: Optional[LinearMethodBase] = None, ): self.hidden_size = hidden_size self.head_size = head_size self.total_num_heads = total_num_heads if total_num_kv_heads is None: total_num_kv_heads = total_num_heads self.total_num_kv_heads = total_num_kv_heads # Divide the weight matrix along the last dimension. tp_size = get_tensor_model_parallel_world_size() self.num_heads = divide(self.total_num_heads, tp_size) if tp_size >= self.total_num_kv_heads: self.num_kv_heads = 1 self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads) else: self.num_kv_heads = divide(self.total_num_kv_heads, tp_size) self.num_kv_head_replicas = 1 input_size = self.hidden_size output_size = (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size output_sizes = [ self.num_heads * tp_size * self.head_size, self.num_kv_heads * tp_size * self.head_size, self.num_kv_heads * tp_size * self.head_size ] super().__init__(input_size, output_size, bias, False, skip_bias_add, params_dtype, linear_method, output_sizes) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[str] = None): param_data = param.data output_dim = getattr(param, "output_dim", None) is_metadata = getattr(param, "is_metadata", False) if loaded_shard_id is None: # Loaded weight is already packed. if output_dim is None: assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) return shard_offsets = [ # (shard_id, shard_offset, shard_size) ("q", 0, self.total_num_heads * self.head_size), ("k", self.total_num_heads * self.head_size, self.total_num_kv_heads * self.head_size), ("v", (self.total_num_heads + self.total_num_kv_heads) * self.head_size, self.total_num_kv_heads * self.head_size), ] packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # If marlin, we need to adjust the offset and size to # account for the tiling. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return tp_rank = get_tensor_model_parallel_rank() assert loaded_shard_id in ["q", "k", "v"] if output_dim is not None: if loaded_shard_id == "q": shard_offset = 0 shard_size = self.num_heads * self.head_size elif loaded_shard_id == "k": shard_offset = self.num_heads * self.head_size shard_size = self.num_kv_heads * self.head_size elif loaded_shard_id == "v": shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size shard_size = self.num_kv_heads * self.head_size # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # If marlin, we need to adjust the offset and size to # account for the tiling. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) param_data = param_data.narrow(output_dim, shard_offset, shard_size) if loaded_shard_id == "q": shard_id = tp_rank else: shard_id = tp_rank // self.num_kv_head_replicas start_idx = shard_id * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_index = ["q", "k", "v"].index(loaded_shard_id) param_data = param_data.narrow(0, shard_index * shard_size, shard_size) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "QKVParallelLinear, assume the weight is the same " "for all partitions.") assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class RowParallelLinear(torch.nn.Module): """Linear layer with row parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second dimension as: - - | A_1 | | . | A = | . | X = [X_1, ..., X_p] | . | | A_p | - - Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. Note that bias is not parallelized. input_is_parallel: If true, we assume that the input is already split across the GPUs and we do not split again. skip_bias_add: This was added to enable performance optimization where bias can be fused with other element-wise operations. We skip adding bias but instead return it. params_dtype: Data type for the parameters. linear_method: (Maybe quantized) linear method. """ def __init__( self, input_size: int, output_size: int, bias: bool = True, input_is_parallel: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, reduce_results: bool = True, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.input_is_parallel = input_is_parallel self.reduce_results = reduce_results if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype # Divide the weight matrix along the last dimension. self.tp_size = get_tensor_model_parallel_world_size() self.input_size_per_partition = divide(input_size, self.tp_size) self.skip_bias_add = skip_bias_add if linear_method is None: linear_method = UnquantizedLinearMethod() self.linear_method = linear_method self.linear_method.create_weights(self, self.input_size_per_partition, [self.output_size], self.input_size, self.output_size, self.params_dtype, weight_loader=self.weight_loader) if not reduce_results and (bias and not skip_bias_add): raise ValueError("When not reduce the results, adding bias to the " "results can lead to incorrect results") if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() input_dim = getattr(param, "input_dim", None) param_data = param.data if input_dim is not None: shard_size = param_data.shape[input_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def forward(self, input_): # Set up backprop all-reduce. if self.input_is_parallel: input_parallel = input_ else: tp_rank = get_tensor_model_parallel_rank() splitted_input = split_tensor_along_last_dim( input_, num_partitions=self.tp_size) input_parallel = splitted_input[tp_rank].contiguous() # Matrix multiply. output_parallel = self.linear_method.apply_weights( self, input_parallel) if self.reduce_results and self.tp_size > 1: output_ = tensor_model_parallel_all_reduce(output_parallel) else: output_ = output_parallel if not self.skip_bias_add: output = output_ + self.bias if self.bias is not None else output_ output_bias = None else: output = output_ output_bias = self.bias return output, output_bias