#include "cpu_types.hpp" namespace { template void rotary_embedding_impl( const int64_t* __restrict__ positions, // [batch_size, seq_len] or // [num_tokens] scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads, /// head_size] or [num_tokens, num_heads, /// head_size] scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, // head_size] or [num_tokens, num_kv_heads, // head_size] const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // // 2] const int rot_dim, const int64_t query_stride, const int64_t key_stride, const int num_heads, const int num_kv_heads, const int head_size, const int num_tokens) { using scalar_vec_t = vec_op::vec_t; constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num(); const int embed_dim = rot_dim / 2; bool flag = (embed_dim % VEC_ELEM_NUM == 0); const int loop_upper = flag ? embed_dim : embed_dim - VEC_ELEM_NUM; auto compute_loop = [&](const int64_t token_head, const scalar_t* cache_ptr, scalar_t* qk) { int j = 0; for (; j < loop_upper; j += VEC_ELEM_NUM) { const int rot_offset = j; const int x_index = rot_offset; const int y_index = embed_dim + rot_offset; const int64_t out_x = token_head + x_index; const int64_t out_y = token_head + y_index; const scalar_vec_t cos(cache_ptr + x_index); const scalar_vec_t sin(cache_ptr + y_index); const scalar_vec_t q_x(qk + out_x); const scalar_vec_t q_y(qk + out_y); vec_op::FP32Vec8 fp32_cos(cos); vec_op::FP32Vec8 fp32_sin(sin); vec_op::FP32Vec8 fp32_q_x(q_x); vec_op::FP32Vec8 fp32_q_y(q_y); auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin; scalar_vec_t(out1).save(qk + out_x); auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin; scalar_vec_t(out2).save(qk + out_y); } if (!flag) { for (; j < embed_dim; ++j) { const int x_index = j; const int y_index = embed_dim + j; const int64_t out_x = token_head + x_index; const int64_t out_y = token_head + y_index; const float fp32_cos = cache_ptr[x_index]; const float fp32_sin = cache_ptr[y_index]; const float fp32_q_x = qk[out_x]; const float fp32_q_y = qk[out_y]; qk[out_x] = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin; qk[out_y] = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin; } } }; #pragma omp parallel for for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { int64_t pos = positions[token_idx]; const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim; for (int i = 0; i < num_heads; ++i) { const int head_idx = i; const int64_t token_head = token_idx * query_stride + head_idx * head_size; compute_loop(token_head, cache_ptr, query); } for (int i = 0; i < num_kv_heads; ++i) { const int head_idx = i; const int64_t token_head = token_idx * key_stride + head_idx * head_size; compute_loop(token_head, cache_ptr, key); } } } template void rotary_embedding_gptj_impl( const int64_t* __restrict__ positions, // [batch_size, seq_len] or // [num_tokens] scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads, /// head_size] or [num_tokens, num_heads, /// head_size] scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, // head_size] or [num_tokens, num_kv_heads, // head_size] const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // // 2] const int rot_dim, const int64_t query_stride, const int64_t key_stride, const int num_heads, const int num_kv_heads, const int head_size, const int num_tokens) { const int embed_dim = rot_dim / 2; #pragma omp parallel for collapse(2) for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { for (int i = 0; i < num_heads; ++i) { int64_t pos = positions[token_idx]; const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim; const scalar_t* cos_cache_ptr = cache_ptr; const scalar_t* sin_cache_ptr = cache_ptr + embed_dim; const int head_idx = i; const int64_t token_head = token_idx * query_stride + head_idx * head_size; scalar_t* head_query = token_head + query; for (int j = 0; j < embed_dim; j += 1) { const int rot_offset = j; const int x_index = 2 * rot_offset; const int y_index = 2 * rot_offset + 1; const float cos = cos_cache_ptr[rot_offset]; const float sin = sin_cache_ptr[rot_offset]; const float x = head_query[x_index]; const float y = head_query[y_index]; head_query[x_index] = x * cos - y * sin; head_query[y_index] = y * cos + x * sin; } } } #pragma omp parallel for collapse(2) for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { for (int i = 0; i < num_kv_heads; ++i) { int64_t pos = positions[token_idx]; const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim; const scalar_t* cos_cache_ptr = cache_ptr; const scalar_t* sin_cache_ptr = cache_ptr + embed_dim; const int head_idx = i; const int64_t token_head = token_idx * key_stride + head_idx * head_size; scalar_t* head_key = key + token_head; for (int j = 0; j < embed_dim; j += 1) { const int rot_offset = j; const int x_index = 2 * rot_offset; const int y_index = 2 * rot_offset + 1; const float cos = cos_cache_ptr[rot_offset]; const float sin = sin_cache_ptr[rot_offset]; const float x = head_key[x_index]; const float y = head_key[y_index]; head_key[x_index] = x * cos - y * sin; head_key[y_index] = y * cos + x * sin; } } } } }; // namespace void rotary_embedding(torch::Tensor& positions, torch::Tensor& query, torch::Tensor& key, int64_t head_size, torch::Tensor& cos_sin_cache, bool is_neox) { int num_tokens = query.numel() / query.size(-1); int rot_dim = cos_sin_cache.size(1); int num_heads = query.size(-1) / head_size; int num_kv_heads = key.size(-1) / head_size; int64_t key_stride = key.stride(-2); int64_t query_stride = query.stride(-2); APHRODITE_DISPATCH_FLOATING_TYPES( query.scalar_type(), "rotary_embedding_impl", [&] { CPU_KERNEL_GUARD_IN(rotary_embedding_impl) if (is_neox) { rotary_embedding_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rot_dim, query_stride, key_stride, num_heads, num_kv_heads, head_size, num_tokens); } else { rotary_embedding_gptj_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rot_dim, query_stride, key_stride, num_heads, num_kv_heads, head_size, num_tokens); } CPU_KERNEL_GUARD_OUT(rotary_embedding_impl) }); }