from abc import abstractmethod from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F from loguru import logger from torch.nn.parameter import Parameter, UninitializedParameter # yapf: disable from aphrodite.distributed import (divide, get_current_tp_rank_partition_offset, get_current_tp_rank_partition_size, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, split_tensor_along_last_dim, tensor_model_parallel_all_gather, tensor_model_parallel_all_reduce) from aphrodite.modeling.parameter import (BaseAphroditeParameter, PackedAphroditeParameter, PerTensorScaleParameter) # yapf: enable from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import (QuantizationConfig, QuantizeMethodBase) WEIGHT_LOADER_V2_SUPPORTED = [ "CompressedTensorsLinearMethod", "GPTQMarlinLinearMethod", "AWQMarlinLinearMethod", "AWQLinearMethod", "HQQMarlinMethod", ] def adjust_marlin_shard(param, shard_size, shard_offset): marlin_tile_size = getattr(param, "marlin_tile_size", None) if marlin_tile_size is None: return shard_size, shard_offset return shard_size * marlin_tile_size, shard_offset * marlin_tile_size def adjust_bitsandbytes_shard(param: Parameter, qkv_offsets: Dict[str, Tuple[int, int]], loaded_shard_id: str) -> Tuple[int, int]: """Adjust the quantization offsets and sizes for BitsAndBytes sharding.""" total, _ = qkv_offsets["total"] orig_offset, orig_size = qkv_offsets[loaded_shard_id] quantized_total = param.data.shape[0] quantized_offset = orig_offset * quantized_total // total quantized_size = orig_size * quantized_total // total return quantized_size, quantized_offset def adjust_scalar_to_fused_array(param, loaded_weight, shard_id): """For fused modules (QKV and MLP) we have an array of length N that holds 1 scale for each "logical" matrix. So the param is an array of length N. The loaded_weight corresponds to one of the shards on disk. Here, we slice the param based on the shard_id for loading. """ qkv_idxs = {"q": 0, "k": 1, "v": 2} if isinstance(shard_id, str): shard_id = qkv_idxs[shard_id] elif not isinstance(shard_id, int): raise ValueError(f"Unknown Shard Id {shard_id}") # AutoFP8 scales do not have a shape # compressed-tensors scales do have a shape if len(loaded_weight.shape) != 0: assert loaded_weight.shape[0] == 1 loaded_weight = loaded_weight[0] return param[shard_id], loaded_weight class LinearMethodBase(QuantizeMethodBase): """Base class for different (maybe quantized) linear methods.""" @abstractmethod def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): """Create weights for a linear layer. The weights will be set as attributes of the layer. Args: layer: The layer that is using the LinearMethodBase factory. input_size_per_partition: Size of the weight input dim on rank X. output_partition_sizes: Sizes of the output dim of each logical weight on rank X. E.g., output_partition_sizes for QKVLinear is a list contains the width of Wq, Wk, Wv on rank X. input_size: Size of the input dim of the weight across all ranks. output_size: Size of the output dim of the weight across all ranks. params_dtype: Datatype of the parameters. """ raise NotImplementedError @abstractmethod def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply the weights in layer to the input tensor. Expects create_weights to have been called before on the layer.""" raise NotImplementedError class UnquantizedLinearMethod(LinearMethodBase): """Linear method without quantization.""" def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): weight = Parameter(torch.empty(sum(output_partition_sizes), input_size_per_partition, dtype=params_dtype), requires_grad=False) set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0}) layer.register_parameter("weight", weight) set_weight_attrs(weight, extra_weight_attrs) def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: return F.linear(x, layer.weight, bias) class LinearBase(torch.nn.Module): """Base linear layer. Args: input_size: input dimension of the linear layer. output_size: output dimension of the linear layer. bias: If true, add bias. skip_bias_add: If true, skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. """ def __init__( self, input_size: int, output_size: int, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.skip_bias_add = skip_bias_add if params_dtype is None: params_dtype = torch.get_default_dtype() self.params_dtype = params_dtype if quant_config is None: self.quant_method: Optional[ QuantizeMethodBase] = UnquantizedLinearMethod() else: self.quant_method = quant_config.get_quant_method(self, prefix=prefix) def forward(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError class ReplicatedLinear(LinearBase): """Replicated linear layer. Args: input_size: input dimension of the linear layer. output_size: output dimension of the linear layer. bias: If true, add bias. skip_bias_add: If true, skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. prefix: The name of the layer in the state dict, including all parents (e.g. model.layers.0.qkv_proj) """ def __init__(self, input_size: int, output_size: int, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix=prefix) # All the linear layer supports quant method. assert self.quant_method is not None self.quant_method.create_weights(self, self.input_size, [self.output_size], self.input_size, self.output_size, self.params_dtype, prefix=prefix) if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=self.params_dtype)) set_weight_attrs(self.bias, {"output_dim": 0}) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): # If the weight on disk does not have a shape, give it one # (such scales for AutoFp8). if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param.size() == loaded_weight.size() param.data.copy_(loaded_weight) def forward(self, x: torch.Tensor) -> torch.Tensor: bias = self.bias if not self.skip_bias_add else None assert self.quant_method is not None output = self.quant_method.apply(self, x, bias) output_bias = self.bias if self.skip_bias_add else None return output, output_bias def extra_repr(self) -> str: s = f"in_features={self.input_size}" s += f", output_features={self.output_size}" s += f", bias={self.bias is not None}" return s class ColumnParallelLinear(LinearBase): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Args: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. gather_output: If true, call all-gather on output and make Y available to all GPUs, otherwise, every GPU will have its output which is Y_i = XA_i skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. output_sizes: list of output sizes packed into one output, like for QKV the list would be size 3. prefix: The name of the layer in the state dict, including all parents (e.g. model.layers.0.qkv_proj) """ def __init__(self, input_size: int, output_size: int, bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, output_sizes: Optional[List[int]] = None, prefix: str = ""): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix) self.gather_output = gather_output # Divide the weight matrix along the last dimension. tp_rank = get_tensor_model_parallel_rank() tp_size = get_tensor_model_parallel_world_size() assert self.quant_method is not None if quant_config is None: self.output_size_per_partition = get_current_tp_rank_partition_size( output_size, tp_rank, tp_size) else: self.output_size_per_partition = divide(self.output_size, tp_size) self.output_partition_sizes = [self.output_size_per_partition] # If QKV or MergedColumn, use output size of each partition. if hasattr(self, "output_sizes"): if quant_config is None: self.output_partition_sizes = [ get_current_tp_rank_partition_size(output_size, tp_rank, tp_size) for output_size in self.output_sizes ] else: self.output_partition_sizes = [ divide(output_size, tp_size) for output_size in self.output_sizes ] if output_sizes is None: output_sizes = [output_size] self.quant_method.create_weights( layer=self, input_size_per_partition=self.input_size, output_partition_sizes=self.output_partition_sizes, input_size=self.input_size, output_size=self.output_size, params_dtype=self.params_dtype, weight_loader=( self.weight_loader_v2 if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader), prefix=prefix) if bias: self.bias = Parameter( torch.empty(self.output_size_per_partition, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() output_dim = getattr(param, "output_dim", None) # Special case for GGUF is_gguf_weight = getattr(param, "is_gguf_weight", False) is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) if is_gguf_weight_type: param.weight_type = loaded_weight.item() # Materialize GGUF UninitializedParameter if is_gguf_weight and isinstance(param, UninitializedParameter): param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype) param_data = param.data if output_dim is not None: shard_size = param_data.shape[output_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for loading scales off disk, which often do not # have a shape (such as in the case of AutoFP8). if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor): param.load_column_parallel_weight(loaded_weight=loaded_weight) def forward(self, input_): bias = self.bias if not self.skip_bias_add else None # Matrix multiply. assert self.quant_method is not None output_parallel = self.quant_method.apply(self, input_, bias) if self.gather_output: # All-gather across the partitions. output = tensor_model_parallel_all_gather(output_parallel) else: output = output_parallel output_bias = self.bias if self.skip_bias_add else None return output, output_bias def extra_repr(self) -> str: s = f"in_features={self.input_size}" s += f", output_features={self.output_size_per_partition}" s += f", bias={self.bias is not None}" s += f", tp_size={get_tensor_model_parallel_world_size()}" s += f", gather_output={self.gather_output}" return s class MergedColumnParallelLinear(ColumnParallelLinear): """Packed linear layers with column parallelism. Similar to ColumnParallelLinear, but the weight matrix is concatenated along the output dimension. When the weight matrix is loaded, the different partitions are sharded separately. Args: input_size: input dimension of the linear layer. output_sizes: list of output dimensions of the linear layer. bias: If true, add bias. gather_output: If true, call all-gather on output and make the output available to all GPUs, otherwise, every GPU will have its own output. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. prefix: The name of the layer in the state dict, including all parents (e.g. model.layers.0.qkv_proj) """ def __init__(self, input_size: int, output_sizes: List[int], bias: bool = True, gather_output: bool = False, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): self.output_sizes = output_sizes self.quant_config = quant_config if quant_config is not None: tp_size = get_tensor_model_parallel_world_size() assert all(output_size % tp_size == 0 for output_size in output_sizes) super().__init__(input_size=input_size, output_size=sum(output_sizes), bias=bias, gather_output=gather_output, skip_bias_add=skip_bias_add, params_dtype=params_dtype, quant_config=quant_config, prefix=prefix) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[int] = None): # Special case for GGUF # initialize GGUF param after we know the quantize type is_gguf_weight = getattr(param, "is_gguf_weight", False) is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) if is_gguf_weight_type: param.data[loaded_shard_id].copy_(loaded_weight) param.shard_weight_type[loaded_shard_id] = loaded_weight.item() return if is_gguf_weight and isinstance(param, UninitializedParameter): from gguf.constants import GGML_QUANT_SIZES ori_shape = param.tensor_shape weight_types = self.qweight_type.shard_weight_type.values() row_size = [] for weight_type in weight_types: block_size, type_size = GGML_QUANT_SIZES[weight_type] row_size.append(ori_shape[1] // block_size * type_size) q_shape = (ori_shape[0], max(row_size)) param.materialize(q_shape, dtype=loaded_weight.dtype) param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. is_metadata = getattr(param, "is_metadata", False) # Special case for per-tensor scale to load scalar into fused array. needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False) if loaded_shard_id is None: # Loaded weight is already fused on disk (qkv/mlp). if output_dim is None: if needs_scalar_to_array: param_data, loaded_weight = adjust_scalar_to_fused_array( param_data, loaded_weight, 0) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) return current_shard_offset = 0 shard_offsets: List[Tuple[int, int, int]] = [] for i, output_size in enumerate(self.output_sizes): shard_offsets.append((i, current_shard_offset, output_size)) current_shard_offset += output_size packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantization. # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return assert loaded_shard_id < len(self.output_sizes) tp_rank = get_tensor_model_parallel_rank() tp_size = get_tensor_model_parallel_world_size() if output_dim is not None: if self.quant_config is None: shard_offset = sum( get_current_tp_rank_partition_size(output_size, tp_rank, tp_size) for output_size in self.output_sizes[:loaded_shard_id]) shard_size = get_current_tp_rank_partition_size( self.output_sizes[loaded_shard_id], tp_rank, tp_size) else: shard_offset = sum( self.output_sizes[:loaded_shard_id]) // tp_size shard_size = self.output_sizes[loaded_shard_id] // tp_size # Special case for quantization. # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) use_bitsandbytes = getattr(param, "use_bitsandbytes", False) if use_bitsandbytes: shard_size = loaded_weight.shape[output_dim] shard_offset = loaded_weight.shape[output_dim] * \ loaded_shard_id if is_gguf_weight: tp_size = get_tensor_model_parallel_world_size() output_dim = getattr(param, "output_dim", None) shard_shape = list(loaded_weight.shape) shard_shape[output_dim] = shard_shape[output_dim] // tp_size param.shard_id.append(loaded_shard_id) param.shard_size[loaded_shard_id] = shard_shape input_dim = getattr(param, "input_dim", None) input_size = loaded_weight.shape[input_dim] param_data = param_data.narrow(input_dim, 0, input_size) param_data = param_data.narrow(output_dim, shard_offset, shard_size) if self.quant_config is None: start_idx = get_current_tp_rank_partition_offset( loaded_weight.shape[output_dim], tp_rank, tp_size) else: start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for AQLM codebooks. elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_offset = loaded_shard_id * shard_size param_data = param_data.narrow(0, shard_offset, shard_size) # Special case for per-tensor scales in fused case. elif needs_scalar_to_array: param_data, loaded_weight = adjust_scalar_to_fused_array( param_data, loaded_weight, loaded_shard_id) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "MergedColumnParallelLinear, assume the weight is " "the same for all partitions.") assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def _load_fused_module_from_checkpoint(self, param: BaseAphroditeParameter, loaded_weight: torch.Tensor): """ Handle special case for models where MLP layers are already fused on disk. In this case, we have no shard id. This function determines the shard id by splitting these layers and then calls the weight loader using the shard id. An example of a model with these fused layers: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct """ current_shard_offset = 0 shard_offsets: List[Tuple[int, int, int]] = [] for i, output_size in enumerate(self.output_sizes): shard_offsets.append((i, current_shard_offset, output_size)) current_shard_offset += output_size for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantization. # If quantized, we need to adjust the offset and size to account # for the packing. if isinstance(param, PackedAphroditeParameter ) and param.packed_dim == param.output_dim: shard_size, shard_offset = \ param.adjust_shard_indexes_for_packing( shard_size=shard_size, shard_offset=shard_offset) loaded_weight_shard = loaded_weight.narrow(param.output_dim, shard_offset, shard_size) self.weight_loader_v2(param, loaded_weight_shard, shard_id) def weight_loader_v2(self, param: BaseAphroditeParameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[int] = None): if loaded_shard_id is None: if isinstance(param, PerTensorScaleParameter): param.load_merged_column_weight(loaded_weight=loaded_weight, shard_id=0) return elif type(param) is BaseAphroditeParameter: param.load_merged_column_weight(loaded_weight=loaded_weight) return self._load_fused_module_from_checkpoint(param, loaded_weight) return assert loaded_shard_id < len(self.output_sizes) tp_size = get_tensor_model_parallel_world_size() shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size shard_size = self.output_sizes[loaded_shard_id] // tp_size param.load_merged_column_weight(loaded_weight=loaded_weight, shard_id=loaded_shard_id, shard_offset=shard_offset, shard_size=shard_size) class QKVParallelLinear(ColumnParallelLinear): """Linear layers for the attention's QKV transformation. Linear layers for the linear transformation of the query, key, and value vectors in the attention layer. The weight matrix is concatenated along the output dimension. The layer is parallelized along the head dimension. When the number of key/value heads is smaller than the number of query heads (e.g., multi-query/grouped-query attention), the key/value head may be replicated while the query heads are partitioned. Args: hidden_size: input hidden state size of the transformer. head_size: size of each attention head. total_num_heads: total number of attention query heads. total_num_kv_heads: total number of attention key/value heads. If None, assume total_num_kv_heads = total_num_heads. bias: If true, add bias. skip_bias_add: This was added to enable performance optimizations where bias can be fused with other element-wise operations. we skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. prefix: The name of the layer in the state dict, including all parents (e.g. model.layers.0.qkv_proj) """ def __init__(self, hidden_size: int, head_size: int, total_num_heads: int, total_num_kv_heads: Optional[int] = None, bias: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = ""): self.hidden_size = hidden_size self.head_size = head_size self.total_num_heads = total_num_heads self.quant_config = quant_config if total_num_kv_heads is None: total_num_kv_heads = total_num_heads self.total_num_kv_heads = total_num_kv_heads # Divide the weight matrix along the last dimension. tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() if quant_config is None: self.num_heads_per_kv_head = (self.total_num_heads // self.total_num_kv_heads) self.num_kv_heads = get_current_tp_rank_partition_size( self.total_num_kv_heads, tp_rank, tp_size) self.num_heads = self.num_kv_heads * self.num_heads_per_kv_head self.num_kv_head_replicas = 1 else: self.num_heads = divide(self.total_num_heads, tp_size) if tp_size >= self.total_num_kv_heads: self.num_kv_heads = 1 self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads) elif tp_size < self.total_num_kv_heads and quant_config is not None: self.num_kv_heads = divide(self.total_num_kv_heads, tp_size) self.num_kv_head_replicas = 1 input_size = self.hidden_size output_size = (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size self.output_sizes = [ self.num_heads * self.head_size * tp_size, # q_proj self.num_kv_heads * self.head_size * tp_size, # k_proj self.num_kv_heads * self.head_size * tp_size, # v_proj ] super().__init__(input_size=input_size, output_size=output_size, bias=bias, gather_output=False, skip_bias_add=skip_bias_add, params_dtype=params_dtype, quant_config=quant_config, prefix=prefix) def _get_shard_offset_mapping(self, loaded_shard_id: str): shard_offset_mapping = { "q": 0, "k": self.num_heads * self.head_size, "v": (self.num_heads + self.num_kv_heads) * self.head_size, "total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size } return shard_offset_mapping.get(loaded_shard_id) def _get_shard_size_mapping(self, loaded_shard_id: str): shard_size_mapping = { "q": self.num_heads * self.head_size, "k": self.num_kv_heads * self.head_size, "v": self.num_kv_heads * self.head_size, } return shard_size_mapping.get(loaded_shard_id) def _load_fused_module_from_checkpoint(self, param: BaseAphroditeParameter, loaded_weight: torch.Tensor): """ Handle special case for models where QKV layers are already fused on disk. In this case, we have no shard id. This function determmines the shard id by splitting these layers and then calls the weight loader using the shard id. An example of a model with these fused layers: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct """ shard_offsets = [ # (shard_id, shard_offset, shard_size) ("q", 0, self.total_num_heads * self.head_size), ("k", self.total_num_heads * self.head_size, self.total_num_kv_heads * self.head_size), ("v", (self.total_num_heads + self.total_num_kv_heads) * self.head_size, self.total_num_kv_heads * self.head_size), ] for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantization. # If quantized, we need to adjust the offset and size to account # for the packing. if isinstance(param, PackedAphroditeParameter ) and param.packed_dim == param.output_dim: shard_size, shard_offset = \ param.adjust_shard_indexes_for_packing( shard_size=shard_size, shard_offset=shard_offset) loaded_weight_shard = loaded_weight.narrow(param.output_dim, shard_offset, shard_size) self.weight_loader_v2(param, loaded_weight_shard, shard_id) def weight_loader_v2(self, param: BaseAphroditeParameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[str] = None): if loaded_shard_id is None: # special case for certain models if isinstance(param, PerTensorScaleParameter): param.load_merged_column_weight(loaded_weight=loaded_weight, shard_id=0) return elif type(param) is BaseAphroditeParameter: param.load_merged_column_weight(loaded_weight=loaded_weight) return self._load_fused_module_from_checkpoint(param, loaded_weight) return assert loaded_shard_id in ["q", "k", "v"] shard_offset = self._get_shard_offset_mapping(loaded_shard_id) shard_size = self._get_shard_size_mapping(loaded_shard_id) param.load_qkv_weight(loaded_weight=loaded_weight, num_heads=self.num_kv_head_replicas, shard_id=loaded_shard_id, shard_offset=shard_offset, shard_size=shard_size) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[str] = None): # Special case for GGUF # initialize GGUF param after we know the quantize type is_gguf_weight = getattr(param, "is_gguf_weight", False) is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) if is_gguf_weight_type and loaded_shard_id is not None: idx_map = {"q": 0, "k": 1, "v": 2} param.data[idx_map[loaded_shard_id]].copy_(loaded_weight) param.shard_weight_type[loaded_shard_id] = loaded_weight.item() return if is_gguf_weight and isinstance(param, UninitializedParameter): from gguf.constants import GGML_QUANT_SIZES ori_shape = param.tensor_shape weight_types = self.qweight_type.shard_weight_type.values() row_size = [] for weight_type in weight_types: block_size, type_size = GGML_QUANT_SIZES[weight_type] row_size.append(ori_shape[1] // block_size * type_size) q_shape = (ori_shape[0], max(row_size)) param.materialize(q_shape, dtype=loaded_weight.dtype) param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. is_metadata = getattr(param, "is_metadata", False) # Special case for per-tensor scales in fused case. needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False) if loaded_shard_id is None: # Loaded weight is already fused on disk (qkv/mlp). if output_dim is None: if needs_scalar_to_array: param_data, loaded_weight = adjust_scalar_to_fused_array( param_data, loaded_weight, 0) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) return shard_offsets = [ # (shard_id, shard_offset, shard_size) ("q", 0, self.total_num_heads * self.head_size), ("k", self.total_num_heads * self.head_size, self.total_num_kv_heads * self.head_size), ("v", (self.total_num_heads + self.total_num_kv_heads) * self.head_size, self.total_num_kv_heads * self.head_size), ] packed_dim = getattr(param, "packed_dim", None) for shard_id, shard_offset, shard_size in shard_offsets: # Special case for Quantized Weights. # If quantized, we need to adjust the offset and size to account # for the packing. if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) loaded_weight_shard = loaded_weight.narrow( output_dim, shard_offset, shard_size) self.weight_loader(param, loaded_weight_shard, shard_id) return tp_rank = get_tensor_model_parallel_rank() assert loaded_shard_id in ["q", "k", "v"] # If output dim is defined, use the default loading process. if output_dim is not None: if loaded_shard_id == "q": shard_offset = 0 shard_size = self.num_heads * self.head_size if self.quant_config is None: multiple_of = self.head_size * self.num_heads_per_kv_head elif loaded_shard_id == "k": shard_offset = self.num_heads * self.head_size shard_size = self.num_kv_heads * self.head_size if self.quant_config is None: multiple_of = self.head_size elif loaded_shard_id == "v": shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size shard_size = self.num_kv_heads * self.head_size if self.quant_config is None: multiple_of = self.head_size # Special case for Quantized Weights. # If quantized, we need to adjust the offset and size to account # for the packing. packed_dim = getattr(param, "packed_dim", None) if packed_dim == output_dim: shard_size = shard_size // param.pack_factor shard_offset = shard_offset // param.pack_factor if self.quant_config is None: multiple_of = multiple_of // param.pack_factor # Special case for Marlin. shard_size, shard_offset = adjust_marlin_shard( param, shard_size, shard_offset) use_bitsandbytes = getattr(param, "use_bitsandbytes", False) if use_bitsandbytes: orig_qkv_offsets = { "q": (0, self.num_heads * self.head_size), "k": (self.num_heads * self.head_size, self.num_kv_heads * self.head_size), "v": ((self.num_heads + self.num_kv_heads) * self.head_size, self.num_kv_heads * self.head_size), "total": ((self.num_heads + 2 * self.num_kv_heads) * self.head_size, 0) } shard_size, shard_offset = adjust_bitsandbytes_shard( param, orig_qkv_offsets, loaded_shard_id) if is_gguf_weight: tp_size = get_tensor_model_parallel_world_size() output_dim = getattr(param, "output_dim", None) shard_shape = list(loaded_weight.shape) shard_shape[output_dim] = shard_shape[output_dim] // tp_size param.shard_id.append(loaded_shard_id) param.shard_size[loaded_shard_id] = shard_shape input_dim = getattr(param, "input_dim", None) input_size = loaded_weight.shape[input_dim] param_data = param_data.narrow(input_dim, 0, input_size) param_data = param_data.narrow(output_dim, shard_offset, shard_size) if self.quant_config is None: tp_size = get_tensor_model_parallel_world_size() total_size = loaded_weight.shape[output_dim] start_idx = get_current_tp_rank_partition_offset( total_size, tp_rank, tp_size, multiple_of=multiple_of) else: if loaded_shard_id == "q": shard_id = tp_rank else: shard_id = tp_rank // self.num_kv_head_replicas start_idx = shard_id * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) # Special case for for AQLM codebooks. elif is_metadata: # metadata indicates fixed size concatenated along dim 0 shard_size = loaded_weight.shape[0] shard_index = ["q", "k", "v"].index(loaded_shard_id) param_data = param_data.narrow(0, shard_index * shard_size, shard_size) # Special case for per-tensor scales in fused case. elif needs_scalar_to_array: param_data, loaded_weight = adjust_scalar_to_fused_array( param_data, loaded_weight, loaded_shard_id) else: ignore_warning = getattr(param, "ignore_warning", False) if not ignore_warning: logger.warning( "Loading a weight without `output_dim` attribute in " "QKVParallelLinear, assume the weight is the same " "for all partitions.") assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class RowParallelLinear(LinearBase): """Linear layer with row parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second dimension as: - - | A_1 | | . | A = | . | X = [X_1, ..., X_p] | . | | A_p | - - Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. Note that bias is not parallelized. input_is_parallel: If true, we assume that the input is already split across the GPUs and we do not split again. skip_bias_add: This was added to enable performance optimization where bias can be fused with other element-wise operations. We skip adding bias but instead return it. params_dtype: Data type for the parameters. quant_config: Quantization configure. partition_multiple_of: Partitions will be divided, so each partition is a multiple of this number. """ def __init__(self, input_size: int, output_size: int, bias: bool = True, input_is_parallel: bool = True, skip_bias_add: bool = False, params_dtype: Optional[torch.dtype] = None, reduce_results: bool = True, quant_config: Optional[QuantizationConfig] = None, partition_multiple_of: int = 1, prefix: str = ""): super().__init__(input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix) self.input_is_parallel = input_is_parallel self.reduce_results = reduce_results self.quant_config = quant_config # Divide the weight matrix along the last dimension. self.tp_rank = get_tensor_model_parallel_rank() self.tp_size = get_tensor_model_parallel_world_size() self.tp_rank = get_tensor_model_parallel_rank() if quant_config is None: self.partition_multiple_of = partition_multiple_of self.input_size_per_partition = get_current_tp_rank_partition_size( input_size, self.tp_rank, self.tp_size, partition_multiple_of) else: self.input_size_per_partition = divide(input_size, self.tp_size) assert self.quant_method is not None self.quant_method.create_weights( layer=self, input_size_per_partition=self.input_size_per_partition, output_partition_sizes=[self.output_size], input_size=self.input_size, output_size=self.output_size, params_dtype=self.params_dtype, weight_loader=( self.weight_loader_v2 if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader), prefix=prefix) if not reduce_results and (bias and not skip_bias_add): raise ValueError("When not reduce the results, adding bias to the " "results can lead to incorrect results") if bias: self.bias = Parameter( torch.empty(self.output_size, dtype=params_dtype)) set_weight_attrs(self.bias, { "output_dim": 0, "weight_loader": self.weight_loader, }) else: self.register_parameter("bias", None) def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_size = get_tensor_model_parallel_world_size() input_dim = getattr(param, "input_dim", None) # Special case for GGUF is_gguf_weight = getattr(param, "is_gguf_weight", False) is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) if is_gguf_weight_type: param.weight_type = loaded_weight.item() # Materialize GGUF UninitializedParameter if is_gguf_weight and isinstance(param, UninitializedParameter): weight_shape = list(loaded_weight.shape) if input_dim: weight_shape[input_dim] = weight_shape[input_dim] // tp_size param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype) param_data = param.data if input_dim is not None: shard_size = param_data.shape[input_dim] if self.quant_config is None: start_idx = get_current_tp_rank_partition_offset( self.input_size, self.tp_rank, self.tp_size, multiple_of=self.partition_multiple_of) else: start_idx = self.tp_rank * shard_size loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size) # Special case for loading scales off disk, which often do not # have a shape (such as in the case of AutoFP8). if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def weight_loader_v2(self, param: BaseAphroditeParameter, loaded_weight: torch.Tensor): param.load_row_parallel_weight(loaded_weight=loaded_weight) def forward(self, input_): if self.input_is_parallel: input_parallel = input_ else: tp_rank = get_tensor_model_parallel_rank() splitted_input = split_tensor_along_last_dim( input_, num_partitions=self.tp_size) input_parallel = splitted_input[tp_rank].contiguous() # Matrix multiply. assert self.quant_method is not None # Only fuse bias add into GEMM for rank 0 (this ensures that # bias will not get added more than once in TP>1 case) bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias output_parallel = self.quant_method.apply(self, input_parallel, bias=bias_) if self.reduce_results and self.tp_size > 1: output = tensor_model_parallel_all_reduce(output_parallel) else: output = output_parallel output_bias = self.bias if self.skip_bias_add else None return output, output_bias def extra_repr(self) -> str: s = f"input_features={self.input_size_per_partition}" s += f", output_features={self.output_size}" s += f", bias={self.bias is not None}" s += f", tp_size={self.tp_size}" s += f", reduce_results={self.reduce_results}" return s