import os import re from typing import List, Optional, Tuple, Type import pytest from transformers import AutoTokenizer from aphrodite.common.sequence import SampleLogprobs from aphrodite.common.utils import is_cpu, is_hip from aphrodite.multimodal.utils import rescale_image_size from ..conftest import IMAGE_ASSETS, AphroditeRunner, HfRunner, _ImageAssets from .utils import check_logprobs_close pytestmark = pytest.mark.vlm HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501 "cherry_blossom": "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n", }) models = ["microsoft/Phi-3-vision-128k-instruct"] def aphrodite_to_hf_output(aphrodite_output: Tuple[List[int], str, Optional[SampleLogprobs]], model: str): """Sanitize aphrodite output to be comparable with hf output.""" _, output_str, out_logprobs = aphrodite_output output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str) assert output_str_without_image[0] == " " output_str_without_image = output_str_without_image[1:] hf_output_str = output_str_without_image + "<|end|><|endoftext|>" tokenizer = AutoTokenizer.from_pretrained(model) hf_output_ids = tokenizer.encode(output_str_without_image) assert hf_output_ids[0] == 1 hf_output_ids = hf_output_ids[1:] return hf_output_ids, hf_output_str, out_logprobs target_dtype = "half" if is_cpu(): target_dtype = "bfloat16" # ROCm Triton FA can run into shared memory issues with these models, # use other backends in the meantime # FIXME if is_hip(): os.environ["APHRODITE_USE_TRITON_FLASH_ATTN"] = "0" def run_test( hf_runner: Type[HfRunner], aphrodite_runner: Type[AphroditeRunner], image_assets: _ImageAssets, model: str, *, size_factors: List[float], dtype: str, max_tokens: int, num_logprobs: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): """Inference result should be the same between hf and aphrodite. All the image fixtures for the test is under tests/images. For huggingface runner, we provide the PIL images as input. For aphrodite runner, we provide MultiModalDataDict objects and corresponding MultiModalConfig as input. Note, the text input is also adjusted to abide by aphrodite contract. The text output is sanitized to be able to compare with hf. """ images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [ rescale_image_size(image, factor, transpose=idx) for idx, factor in enumerate(size_factors) ], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # NOTE: take care of the order. run Aphrodite first, and then run HF. # Aphrodite needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with aphrodite_runner(model, max_model_len=4096, max_num_seqs=1, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as aphrodite_model: aphrodite_outputs_per_image = [ aphrodite_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] # use eager mode for hf runner, since phi3_v didn't work with flash_attn hf_model_kwargs = {"_attn_implementation": "eager"} with hf_runner(model, dtype=dtype, model_kwargs=hf_model_kwargs) as hf_model: eos_token_id = hf_model.processor.tokenizer.eos_token_id hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, num_logprobs=num_logprobs, images=images, eos_token_id=eos_token_id) for prompts, images in inputs_per_image ] for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_image, aphrodite_outputs_per_image): check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=[ aphrodite_to_hf_output(aphrodite_output, model) for aphrodite_output in aphrodite_outputs ], name_0="hf", name_1="aphrodite", ) # Since we use _attn_implementation="eager" for hf_runner, there is more # significant numerical difference. The basic `logprobs=5` fails to pass. @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [10]) def test_models(hf_runner, aphrodite_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: run_test( hf_runner, aphrodite_runner, image_assets, model, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=1, )