"""Compare the outputs of HF and Aphrodite when using greedy sampling. This test only tests small models. Big models such as 7B should be tested from test_big_models.py because it could use a larger instance to run tests. Run `pytest tests/models/test_models.py`. """ import pytest from .utils import check_outputs_equal MODELS = [ "facebook/opt-125m", "gpt2", "bigcode/tiny_starcoder_py", "EleutherAI/pythia-70m", "bigscience/bloom-560m", # Testing alibi slopes. "microsoft/phi-2", "stabilityai/stablelm-3b-4e1t", # "allenai/OLMo-1B", # Broken "bigcode/starcoder2-3b", "google/gemma-1.1-2b-it", ] @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) def test_models( hf_runner, aphrodite_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: # To pass the small model tests, we need full precision. assert dtype == "float" with hf_runner(model, dtype=dtype) as hf_model: hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) with aphrodite_runner(model, dtype=dtype) as aphrodite_model: aphrodite_outputs = aphrodite_model.generate_greedy( example_prompts, max_tokens) check_outputs_equal( outputs_0_lst=hf_outputs, outputs_1_lst=aphrodite_outputs, name_0="hf", name_1="aphrodite", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) def test_model_print( aphrodite_runner, model: str, dtype: str, ) -> None: with aphrodite_runner(model, dtype=dtype) as aphrodite_model: # This test is for verifying whether the model's extra_repr # can be printed correctly. print(aphrodite_model.model.llm_engine.model_executor.driver_worker. model_runner.model)