from typing import Any, Dict, List, Optional import gguf import torch from torch.nn.parameter import Parameter, UninitializedParameter from aphrodite import _custom_ops as ops from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import (QuantizationConfig, QuantizeMethodBase) class GGUFConfig(QuantizationConfig): """Config class for GGUF.""" def __init__(self, ) -> None: pass def __repr__(self) -> str: return ("GGUFConfig()") def get_name(self) -> str: return "gguf" def get_supported_act_dtypes(self) -> List[torch.dtype]: return [torch.half, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: return 60 @classmethod def get_config_filenames(cls) -> List[str]: return [] # no extra configs. @classmethod def from_config(cls, config: Dict[str, Any]) -> "GGUFConfig": return cls() def get_quant_method(self, layer: torch.nn.Module, prefix: str) -> Optional["QuantizeMethodBase"]: if isinstance(layer, LinearBase): return GGUFLinearMethod(self) elif isinstance(layer, VocabParallelEmbedding): return GGUFEmbeddingMethod(self) return None def get_scaled_act_names(self) -> List[str]: return [] def _fuse_mul_mat(x: torch.Tensor, qweight: torch.Tensor, qweight_type: int) -> torch.Tensor: # use dequantize mulmat for IQmatrix, mmq for k-quants if qweight_type >= 16: block_size, type_size = gguf.GGML_QUANT_SIZES[qweight_type] shape = (qweight.shape[0], qweight.shape[1] // type_size * block_size) weight = ops.ggml_dequantize(qweight, qweight_type, *shape) y = x @ weight.T else: y = ops.ggml_mul_mat_a8(qweight, x, qweight_type, qweight.shape[0]) return y class GGUFLinearMethod(LinearMethodBase): """Linear method for GGUF. Args: quant_config: The GGUF quantization config. """ def __init__(self, quant_config: GGUFConfig): self.quant_config = quant_config def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): output_size_per_partition = sum(output_partition_sizes) tensor_shape = (output_size_per_partition, input_size_per_partition) qweight = UninitializedParameter(requires_grad=False) set_weight_attrs( qweight, { "input_dim": 1, "output_dim": 0, "tensor_shape": tensor_shape, "is_gguf_weight": True, "shard_size": {}, "shard_id": [], }) set_weight_attrs(qweight, extra_weight_attrs) layer.register_parameter("qweight", qweight) qweight_type = Parameter(torch.empty(len(output_partition_sizes), dtype=torch.uint8), requires_grad=False) set_weight_attrs( qweight_type, { "is_gguf_weight_type": True, "weight_type": 0, "shard_weight_type": {}, "ignore_warning": True }) set_weight_attrs(qweight_type, extra_weight_attrs) layer.register_parameter("qweight_type", qweight_type) def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: shard_size = getattr(layer.qweight, "shard_size", None) shard_id = getattr(layer.qweight, "shard_id", None) if shard_id and shard_size: result = [] offset = 0 # dequantize shard weights respectively shard_id = ["q", "k", "v"] if "q" in shard_id else shard_id for id in shard_id: shard_weight = layer.qweight[ offset:offset + shard_size[id][0], :shard_size[id][1]].contiguous() qweight_type = layer.qweight_type.shard_weight_type[id] result.append(_fuse_mul_mat(x, shard_weight, qweight_type)) offset += shard_size[id][0] out = torch.cat(result, axis=1) else: qweight = layer.qweight qweight_type = layer.qweight_type.weight_type out = _fuse_mul_mat(x, qweight, qweight_type) if bias is not None: out.add_(bias) return out class GGUFEmbeddingMethod(GGUFLinearMethod): """Embedding method for GGUF. Args: quant_config: The GGUF quantization config. """ def embedding(self, layer: torch.nn.Module, x: torch.Tensor) -> torch.Tensor: qweight = layer.qweight qweight_type = layer.qweight_type.weight_type block_size, type_size = gguf.GGML_QUANT_SIZES[qweight_type] hidden_size = qweight.shape[1] // type_size * block_size if qweight_type < 2: return torch.embedding(qweight, x) x_flat = x.flatten() quant = torch.index_select(qweight, dim=0, index=x_flat) dequant = ops.ggml_dequantize(quant, qweight_type, hidden_size, x_flat.shape[0]) return dequant.view(*x.shape, hidden_size)