from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import torch from aphrodite._C import cache_ops from aphrodite._C import ops from aphrodite.attention.ops.prefix_prefill import context_attention_fwd # Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`. _PARTITION_SIZE = 512 @dataclass class PagedAttentionMetadata: """Metadata for PagedAttention.""" # (batch_size,). The length of context (tokens stored in KV cache) per # sequence. WARNING: When it is a prefill request, it doesn't include new # tokens. When it is for decoding, it includes a new token. context_lens: Optional[torch.Tensor] # Maximum context length in the batch. max_context_len: Optional[int] # (batch_size, max_blocks_per_seq). # Block addresses per sequence. (Seq id -> list of physical block) # E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks # in the kv cache. Each block can contain up to block_size tokens. # 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph # captured. block_tables: Optional[torch.Tensor] class PagedAttention: @staticmethod def get_supported_head_sizes() -> List[int]: return [64, 80, 96, 112, 128, 256] @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return (2, num_blocks, block_size * num_kv_heads * head_size) @staticmethod def split_kv_cache( kv_cache: torch.Tensor, num_kv_heads: int, head_size: int, ) -> Tuple[torch.Tensor, torch.Tensor]: x = 16 // kv_cache.element_size() num_blocks = kv_cache.shape[1] key_cache = kv_cache[0] key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x, -1, x) value_cache = kv_cache[1] value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1) return key_cache, value_cache @staticmethod def write_to_paged_cache( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, kv_scale: float, ) -> None: cache_ops.reshape_and_cache( key, value, key_cache, value_cache, slot_mapping.flatten(), kv_cache_dtype, kv_scale, ) @staticmethod def forward_decode( query: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, block_tables: torch.Tensor, context_lens: torch.Tensor, max_context_len: int, kv_cache_dtype: str, num_kv_heads: int, scale: float, alibi_slopes: Optional[torch.Tensor], kv_scale: float, ) -> torch.Tensor: output = torch.empty_like(query) block_size = value_cache.shape[3] num_seqs, num_heads, head_size = query.shape max_num_partitions = ((max_context_len + _PARTITION_SIZE - 1) // _PARTITION_SIZE) # NOTE: We use a simple heuristic to decide whether to use # PagedAttention V1 or V2. If the number of partitions is 1, we use # V1 to avoid the overhead of reduction. Also, if the number of # sequences or heads is large, we use V1 since there is enough work # to parallelize. # TODO: Tune this heuristic. # For context len > 8192, use V2 kernel to avoid shared memory shortage. use_v1 = (max_context_len <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)) if use_v1: # Run PagedAttention V1. ops.paged_attention_v1( output, query, key_cache, value_cache, num_kv_heads, scale, block_tables, context_lens, block_size, max_context_len, alibi_slopes, kv_cache_dtype, kv_scale, ) else: # Run PagedAttention V2. assert _PARTITION_SIZE % block_size == 0 tmp_output = torch.empty( size=(num_seqs, num_heads, max_num_partitions, head_size), dtype=output.dtype, device=output.device, ) exp_sums = torch.empty( size=(num_seqs, num_heads, max_num_partitions), dtype=torch.float32, device=output.device, ) max_logits = torch.empty_like(exp_sums) ops.paged_attention_v2( output, exp_sums, max_logits, tmp_output, query, key_cache, value_cache, num_kv_heads, scale, block_tables, context_lens, block_size, max_context_len, alibi_slopes, kv_cache_dtype, kv_scale, ) return output @staticmethod def forward_prefix( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, block_tables: torch.Tensor, subquery_start_loc: torch.Tensor, prompt_lens_tensor: torch.Tensor, context_lens: torch.Tensor, max_subquery_len: int, alibi_slopes: Optional[torch.Tensor], ) -> torch.Tensor: output = torch.empty_like(query) context_attention_fwd( query, key, value, output, key_cache, value_cache, block_tables, # subquery_start_loc is (batch_size + 1,) subquery_start_loc[:-1], prompt_lens_tensor, context_lens, max_subquery_len, alibi_slopes, ) return output @staticmethod def swap_blocks( src_kv_cache: torch.Tensor, dst_kv_cache: torch.Tensor, src_to_dst: Dict[int, int], ) -> None: src_key_cache = src_kv_cache[0] dst_key_cache = dst_kv_cache[0] cache_ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst) src_value_cache = src_kv_cache[1] dst_value_cache = dst_kv_cache[1] cache_ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst) @staticmethod def copy_blocks( kv_caches: List[torch.Tensor], src_to_dists: Dict[int, List[int]], ) -> None: key_caches = [kv_cache[0] for kv_cache in kv_caches] value_caches = [kv_cache[1] for kv_cache in kv_caches] cache_ops.copy_blocks(key_caches, value_caches, src_to_dists)