import types from typing import List, Optional, Tuple, Type, Union import pytest import torch from PIL.Image import Image from transformers import AutoConfig from aphrodite.common.utils import is_cpu from aphrodite.multimodal.utils import rescale_image_size from ....conftest import (IMAGE_ASSETS, AphroditeRunner, HfRunner, PromptImageInput, _ImageAssets) from ...utils import check_logprobs_close HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "<|im_start|>User\n\nWhat's the content in the center of the image?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 "cherry_blossom": "<|im_start|>User\n\nWhat is the season?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 }) HF_MULTIIMAGE_IMAGE_PROMPT = "<|im_start|>User\nImage-1: \nImage-2: \nDescribe the two images in detail.<|im_end|>\n<|im_start|>Assistant\n" # noqa: E501 models = [ "OpenGVLab/InternVL2-1B", "OpenGVLab/InternVL2-2B", # Broken due to outdated implementation of Phi-3 # See: https://huggingface.co/OpenGVLab/InternVL2-4B/discussions/3 # "OpenGVLab/InternVL2-4B", ] # adapted from https://huggingface.co/OpenGVLab/InternVL2-1B/blob/main/modeling_internvl_chat.py def generate( self, pixel_values: torch.FloatTensor, input_ids: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: """Generate method for InternVL2 model without fixed use_cache.""" assert self.img_context_token_id is not None vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, **generate_kwargs, ) return outputs def run_test( hf_runner: Type[HfRunner], aphrodite_runner: Type[AphroditeRunner], inputs: List[Tuple[List[str], PromptImageInput]], model: str, *, dtype: str, max_tokens: int, num_logprobs: int, mm_limit: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): """Inference result should be the same between hf and aphrodite. All the image fixtures for the test are from IMAGE_ASSETS. For huggingface runner, we provide the PIL images as input. For aphrodite runner, we provide MultiModalDataDict objects and corresponding MultiModalConfig as input. Note, the text input is also adjusted to abide by aphrodite contract. The text output is sanitized to be able to compare with hf. """ # NOTE: take care of the order. run Aphrodite first, and then run HF. # Aphrodite needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). class InternVLProcessor: """A simple processor for InternVL2 which misses a processor.""" def __init__(self, hf_runner: HfRunner): self.num_image_token = hf_runner.model.num_image_token self.tokenizer = hf_runner.tokenizer self.dtype = hf_runner.model.dtype self.config = AutoConfig.from_pretrained(hf_runner.model_name) self.vision_config = self.config.vision_config self.use_thumbnail = self.config.use_thumbnail self.min_num = self.config.min_dynamic_patch self.max_num = self.config.max_dynamic_patch self.image_size = self.vision_config.image_size def __call__(self, text: str, images: Union[Image, List[Image]], **kwargs): from aphrodite.modeling.models.internvl import ( IMG_CONTEXT, IMG_END, IMG_START, image_to_pixel_values) images = [images] if isinstance(images, Image) else images pixel_values = [ image_to_pixel_values(image, self.image_size, self.min_num, self.max_num, self.use_thumbnail).to(self.dtype) for image in images ] num_patches_list = [ pixel_value.shape[0] for pixel_value in pixel_values ] pixel_values = torch.cat(pixel_values, dim=0) for num_patches in num_patches_list: context_tokens = IMG_CONTEXT * self.num_image_token \ * num_patches image_tokens = IMG_START + context_tokens + IMG_END text = text.replace('', image_tokens, 1) prompt = self.tokenizer(text, return_tensors="pt") prompt.update({"pixel_values": pixel_values}) return prompt # max_model_len should be greater than image_feature_size with aphrodite_runner(model, max_model_len=4096, dtype=dtype, limit_mm_per_prompt={"image": mm_limit}, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as aphrodite_model: aphrodite_outputs_per_image = [ aphrodite_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs ] with hf_runner(model, dtype=dtype) as hf_model: img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids( "") hf_model.model.img_context_token_id = img_context_token_id hf_model.processor = InternVLProcessor(hf_model) hf_model.model.get_output_embeddings = lambda: \ hf_model.model.language_model.get_output_embeddings() hf_model.model.generate = types.MethodType(generate, hf_model.model) eos_token_id = hf_model.tokenizer.eos_token_id hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, num_logprobs=num_logprobs, images=hf_images, eos_token_id=eos_token_id) for prompts, hf_images in inputs ] for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_image, aphrodite_outputs_per_image): # TODO: Check whether using original CLIPVisionModel can improve # consistency against HF check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=aphrodite_outputs, name_0="hf", name_1="aphrodite", ) def run_awq_test( aphrodite_runner: Type[AphroditeRunner], image_assets: _ImageAssets, models: Tuple[str, str], *, size_factors: List[float], dtype: str, max_tokens: int, num_logprobs: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): source_model, quant_model = models images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # NOTE: take care of the order. run Aphrodite first, and then run HF. # Aphrodite needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with aphrodite_runner(source_model, max_model_len=4096, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as aphrodite_model: source_outputs_per_image = [ aphrodite_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] with aphrodite_runner(quant_model, quantization="awq", max_model_len=4096, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as aphrodite_model: quant_outputs_per_image = [ aphrodite_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] for source_outputs, quant_outputs in zip(source_outputs_per_image, quant_outputs_per_image): # TODO: Check whether using original CLIPVisionModel can improve # consistency against HF check_logprobs_close( outputs_0_lst=source_outputs, outputs_1_lst=quant_outputs, name_0="source", name_1="awq", ) target_dtype = "half" if is_cpu(): target_dtype = "bfloat16" @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_models(hf_runner, aphrodite_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] run_test( hf_runner, aphrodite_runner, inputs_per_image, model, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=1, tensor_parallel_size=1, ) @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.5, 0.75, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_multi_images_models(hf_runner, aphrodite_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image for asset in image_assets] inputs_per_case = [ ([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors], [[rescale_image_size(image, factor) for image in images] for factor in size_factors]) ] run_test( hf_runner, aphrodite_runner, inputs_per_case, model, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=2, tensor_parallel_size=1, ) @pytest.mark.parametrize("model", ["OpenGVLab/InternVL2-2B"]) @pytest.mark.parametrize("size_factors", [[0.5, 1.0]]) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_different_num_patches(hf_runner, aphrodite_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image.resize((896, 896)) for asset in image_assets] inputs_batching = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] inputs_multi_images = [ ([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors], [[rescale_image_size(image, factor) for image in images] for factor in size_factors]) ] for inputs in [inputs_batching, inputs_multi_images]: run_test( hf_runner, aphrodite_runner, inputs, model, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=2, tensor_parallel_size=1, ) @pytest.mark.parametrize( "models", [("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")]) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_awq_models(aphrodite_runner, image_assets, models, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: run_awq_test( aphrodite_runner, image_assets, models, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=1, )