"""Implementation of SiglipVisionModel intended to be only used within a vision language model.""" import math from array import array from typing import Iterable, Optional, Tuple import torch from aphrodite_flash_attn import flash_attn_func from PIL import Image from torch import nn from transformers import SiglipVisionConfig from transformers.models.siglip.modeling_siglip import SiglipAttention from xformers.ops import memory_efficient_attention from aphrodite.common.config import ModelConfig from aphrodite.common.sequence import SequenceData from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.inputs import LLMInputs from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.multimodal.utils import (cached_get_tokenizer, repeat_and_pad_placeholder_tokens) from aphrodite.quantization import QuantizationConfig def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int: # Since interpolation is applied, the image size need not be divisible # assert image_size % patch_size == 0 return image_size // patch_size def get_siglip_num_patches(*, image_size: int, patch_size: int) -> int: grid_length = get_siglip_patch_grid_length(image_size=image_size, patch_size=patch_size) return grid_length * grid_length def get_siglip_image_feature_size(hf_config: SiglipVisionConfig) -> int: return get_siglip_num_patches(image_size=hf_config.image_size, patch_size=hf_config.patch_size) def get_max_siglip_image_tokens(hf_config: SiglipVisionConfig) -> int: return get_siglip_image_feature_size(hf_config) def dummy_seq_data_for_siglip( hf_config: SiglipVisionConfig, seq_len: int, num_images: int, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): if image_feature_size_override is None: image_feature_size = get_siglip_image_feature_size(hf_config) else: image_feature_size = image_feature_size_override token_ids = array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [image_token_id]) * image_feature_size token_ids += array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - image_feature_size) return SequenceData(token_ids) def dummy_image_for_siglip( hf_config: SiglipVisionConfig, num_images: int, *, image_width_override: Optional[int] = None, image_height_override: Optional[int] = None, ): width = height = hf_config.image_size if image_width_override is not None: width = image_width_override if image_height_override is not None: height = image_height_override image = Image.new("RGB", (width, height), color=0) return {"image": image if num_images == 1 else [image] * num_images} def input_processor_for_siglip( model_config: ModelConfig, hf_config: SiglipVisionConfig, llm_inputs: LLMInputs, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs tokenizer = cached_get_tokenizer(model_config.tokenizer) if image_feature_size_override is None: image_data = multi_modal_data["image"] if isinstance(image_data, Image.Image): image_feature_size = get_siglip_image_feature_size(hf_config) elif isinstance(image_data, torch.Tensor): image_feature_size = image_data.shape[0] else: raise TypeError(f"Invalid image type: {type(image_data)}") else: image_feature_size = image_feature_size_override new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens( tokenizer, llm_inputs.get("prompt"), llm_inputs["prompt_token_ids"], placeholder_token_id=image_token_id, repeat_count=image_feature_size, ) # NOTE: Create a defensive copy of the original inputs return LLMInputs( prompt_token_ids=new_token_ids, prompt=new_prompt, multi_modal_data=multi_modal_data, ) # Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa class SiglipVisionEmbeddings(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches = (self.image_size // self.patch_size)**2 self.num_positions = self.num_patches self.position_embedding = VocabParallelEmbedding( self.num_positions, self.embed_dim) self.register_buffer( "position_ids", torch.arange(self.num_positions, dtype=torch.int64).expand( (1, -1)), persistent=False, ) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method is an adapted method for SigLIP (due to SigLIP not having class embedding unlike other ViTs) that allows the model to interpolate the pre-trained position encodings such that it can be usable on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ position_embeddings = self.position_embedding.weight.unsqueeze(0) num_patches = embeddings.shape[1] num_positions = position_embeddings.shape[1] if num_patches == num_positions and height == width: return position_embeddings dim = embeddings.shape[-1] height = height // self.patch_size width = width // self.patch_size # we add a small number to avoid floating point error # in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 height, width = height + 0.1, width + 0.1 patch_pos_embed = position_embeddings.reshape( 1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=( height / math.sqrt(num_positions), width / math.sqrt(num_positions), ), mode="bicubic", align_corners=False, ) if (int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]): raise ValueError("Width or height does not match with " "the interpolated position embeddings") patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: _, _, height, width = pixel_values.shape target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to( dtype=target_dtype)) # shape = [*, width, grid, grid] embeddings = patch_embeds.flatten(2).transpose(1, 2) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding( embeddings, height, width) else: embeddings = embeddings + self.position_embedding( self.position_ids) return embeddings # NOTE: Not used - kept for later when we TP the ViT # TODO(ChristopherCho): Implement TP version of Attention class SiglipTPAttention(nn.Module): def __init__( self, config, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.embed_dim = config.hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = config.num_attention_heads if self.total_num_heads % tp_size != 0: raise ValueError( f"Number of attention heads ({self.total_num_heads}) " "must be divisible by the tensor model parallel size" f" ({tp_size}).") self.num_heads = self.total_num_heads // tp_size self.head_dim = self.embed_dim // self.total_num_heads if self.head_dim * self.total_num_heads != self.embed_dim: raise ValueError(f"embed_dim must be divisible by num_heads (got " "`embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads}).") self.qkv_size = self.num_heads * self.head_dim self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.qkv_proj = QKVParallelLinear( hidden_size=self.embed_dim, head_size=self.head_dim, total_num_heads=self.total_num_heads, quant_config=quant_config, ) self.out_proj = RowParallelLinear( input_size=self.embed_dim, output_size=self.embed_dim, quant_config=quant_config, ) self.attn_fn = self._basic_attention_forward def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: """Input shape: Batch x Time x Channel""" batch_size, q_len, _ = hidden_states.size() qkv_states, _ = self.qkv_proj(hidden_states) query_states, key_states, value_states = qkv_states.split( [self.qkv_size] * 3, dim=-1) attn_output = self.attn_fn( q=query_states, k=key_states, v=value_states, batch_size=batch_size, q_len=q_len, ) attn_output, _ = self.out_proj(attn_output) return attn_output def _basic_attention_forward(self, q, k, v, batch_size, q_len): q = q.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k_v_seq_len = k.shape[-2] attn_weights = torch.matmul(q, k.transpose(2, 3)) * self.scale if attn_weights.size() != ( batch_size, self.num_heads, q_len, k_v_seq_len, ): raise ValueError( "Attention weights should be of size " f"{(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" f" {attn_weights.size()}") # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, v) if attn_output.size() != ( batch_size, self.num_heads, q_len, self.head_dim, ): raise ValueError( "`attn_output` should be of size " f"{(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) return attn_output # NOTE: Not used - kept for later when we TP the ViT # TODO(ChristopherCho): flash_attn_func is not working properly. # It constantly throws a CUDA error. class SiglipFlashAttention2(SiglipTPAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.attn_fn = self._flash_attention_forward # Ported from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L449 # and https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/modeling_flash_attention_utils.py#L133 def _flash_attention_forward(self, q, k, v, batch_size, q_len, *args, **kwargs): """Implements the multihead softmax attention. Arguments --------- q, k, v: The tensor containing the query, key, and value. (B, S, H, D) """ q = q.view(batch_size, q_len, self.num_heads, self.head_dim) k = k.view(batch_size, q_len, self.num_heads, self.head_dim) v = v.view(batch_size, q_len, self.num_heads, self.head_dim) attn_output = flash_attn_func( q, k, v, dropout_p=self.dropout, causal=False, ) attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() return attn_output # NOTE: Not used - kept for later when we TP the ViT class SiglipSdpaAttention(SiglipTPAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_causal = False self.attn_fn = self._sdpa_attention_forward def _sdpa_attention_forward(self, q, k, v, batch_size, q_len): q = q.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) attn_output = torch.nn.functional.scaled_dot_product_attention( q, k, v, dropout_p=self.dropout, is_causal=False, scale=self.scale) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(batch_size, q_len, self.embed_dim) return attn_output # NOTE: Not used - kept for later when we TP the ViT class SiglipxFormersAttention(SiglipTPAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.attn_fn = self._xformers_attention_forward def _xformers_attention_forward(self, q, k, v, batch_size, q_len): q = q.view(batch_size, q_len, self.num_heads, self.head_dim) k = k.view(batch_size, q_len, self.num_heads, self.head_dim) v = v.view(batch_size, q_len, self.num_heads, self.head_dim) attn_output = memory_efficient_attention(q, k, v, p=0.0, scale=self.scale) attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() return attn_output # NOTE: Not used - kept for later when we TP the ViT SIGLIP_ATTENTION_CLASSES = { "eager": SiglipTPAttention, "flash_attention_2": SiglipFlashAttention2, "sdpa": SiglipSdpaAttention, "xformers": SiglipxFormersAttention, } class SiglipMLP(nn.Module): def __init__( self, config, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.activation_fn = get_act_fn(config.hidden_act) # For quantization, we require the hidden size to be a multiple of 64 quantizable = (config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0) self.fc1 = ColumnParallelLinear( config.hidden_size, config.intermediate_size, quant_config=quant_config if quantizable else None, ) self.fc2 = RowParallelLinear( config.intermediate_size, config.hidden_size, quant_config=quant_config if quantizable else None, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class SiglipEncoderLayer(nn.Module): def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.embed_dim = config.hidden_size # TODO(ChristopherCho): use TP'ed Attention block self.self_attn = SiglipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP( config, quant_config=quant_config, ) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, ) -> Tuple[torch.Tensor, None]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states, None class SiglipEncoder(nn.Module): def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.config = config if num_hidden_layers_override is None: num_hidden_layers = config.num_hidden_layers else: num_hidden_layers = num_hidden_layers_override self.layers = nn.ModuleList([ SiglipEncoderLayer(config, quant_config=quant_config) for _ in range(num_hidden_layers) ]) def forward( self, inputs_embeds: torch.Tensor, ) -> torch.Tensor: hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states, _ = encoder_layer(hidden_states) return hidden_states class SiglipMultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) # TODO(ChristopherCho): Implement aphrodite version of MHA self.attention = torch.nn.MultiheadAttention( config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config=config, quant_config=quant_config) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) hidden_state = self.attention(probe, hidden_state, hidden_state)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] class SiglipVisionTransformer(nn.Module): def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipVisionEmbeddings(config) self.encoder = SiglipEncoder( config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, ) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.use_head = (True if not hasattr(config, "vision_use_head") else config.vision_use_head) if self.use_head: self.head = SiglipMultiheadAttentionPoolingHead( config=config, quant_config=quant_config) def forward( self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = True, ) -> torch.Tensor: hidden_states = self.embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, ) encoder_outputs = self.encoder(inputs_embeds=hidden_states) last_hidden_state = self.post_layernorm(encoder_outputs) # TODO: add this back when pooled_output is used in inference # if self.use_head: # pooled_output = self.head(last_hidden_state) return last_hidden_state class SiglipVisionModel(nn.Module): config_class = SiglipVisionConfig main_input_name = "pixel_values" def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.vision_model = SiglipVisionTransformer( config, quant_config, num_hidden_layers_override=num_hidden_layers_override, ) def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding def forward( self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: return self.vision_model( pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters()) layer_count = len(self.vision_model.encoder.layers) for name, loaded_weight in weights: # omit layers when num_hidden_layers_override is set if "vision_model.encoder.layers." in name: layer_idx = int(name.split(".")[3]) if layer_idx >= layer_count: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)