"""Minimal implementation of CLIPVisionModel intended to be only used within a vision language model.""" from array import array from typing import Optional import torch import torch.nn as nn from PIL import Image from transformers import CLIPVisionConfig from transformers.models.clip.modeling_clip import CLIPAttention from aphrodite.common.config import ModelConfig from aphrodite.common.sequence import SequenceData from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE from aphrodite.inputs import LLMInputs from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, RowParallelLinear) from aphrodite.multimodal.utils import (cached_get_tokenizer, repeat_and_pad_placeholder_tokens) from aphrodite.quantization import QuantizationConfig def get_clip_patch_grid_length(*, image_size: int, patch_size: int) -> int: assert image_size % patch_size == 0 return image_size // patch_size def get_clip_num_patches(*, image_size: int, patch_size: int) -> int: grid_length = get_clip_patch_grid_length(image_size=image_size, patch_size=patch_size) return grid_length * grid_length def get_clip_image_feature_size(hf_config: CLIPVisionConfig) -> int: return get_clip_num_patches(image_size=hf_config.image_size, patch_size=hf_config.patch_size) def get_max_clip_image_tokens(hf_config: CLIPVisionConfig) -> int: return get_clip_image_feature_size(hf_config) def dummy_seq_data_for_clip( hf_config: CLIPVisionConfig, seq_len: int, num_images: int, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): if image_feature_size_override is None: image_feature_size = get_clip_image_feature_size(hf_config) else: image_feature_size = image_feature_size_override token_ids = array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [image_token_id]) * image_feature_size * num_images token_ids += array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - image_feature_size * num_images) return SequenceData(token_ids) def dummy_image_for_clip( hf_config: CLIPVisionConfig, num_images: int, *, image_width_override: Optional[int] = None, image_height_override: Optional[int] = None, ): width = height = hf_config.image_size if image_width_override is not None: width = image_width_override if image_height_override is not None: height = image_height_override image = Image.new("RGB", (width, height), color=0) return {"image": image if num_images == 1 else [image] * num_images} def input_processor_for_clip( model_config: ModelConfig, hf_config: CLIPVisionConfig, llm_inputs: LLMInputs, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs tokenizer = cached_get_tokenizer(model_config.tokenizer) if image_feature_size_override is None: image_data = multi_modal_data["image"] if isinstance(image_data, Image.Image): image_feature_size = get_clip_image_feature_size(hf_config) elif isinstance(image_data, torch.Tensor): image_feature_size = image_data.shape[0] else: raise TypeError(f"Invalid image type: {type(image_data)}") else: image_feature_size = image_feature_size_override new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens( tokenizer, llm_inputs.get("prompt"), llm_inputs["prompt_token_ids"], placeholder_token_id=image_token_id, repeat_count=image_feature_size, ) # NOTE: Create a defensive copy of the original inputs return LLMInputs(prompt_token_ids=new_token_ids, prompt=new_prompt, multi_modal_data=multi_modal_data) # Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/clip/modeling_clip.py#L164 # noqa class CLIPVisionEmbeddings(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = get_clip_num_patches(image_size=self.image_size, patch_size=self.patch_size) self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to( dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class CLIPMLP(nn.Module): def __init__(self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None): super().__init__() self.config = config self.activation_fn = get_act_fn(config.hidden_act) self.fc1 = ColumnParallelLinear(config.hidden_size, config.intermediate_size, bias=True, quant_config=quant_config) self.fc2 = RowParallelLinear(config.intermediate_size, config.hidden_size, bias=True, quant_config=quant_config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class CLIPEncoderLayer(nn.Module): def __init__(self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None): super().__init__() self.self_attn = CLIPAttention(config) self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = CLIPMLP(config, quant_config=quant_config) self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class CLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__(self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None): super().__init__() self.config = config if num_hidden_layers_override is None: num_hidden_layers = config.num_hidden_layers else: num_hidden_layers = num_hidden_layers_override self.layers = nn.ModuleList([ CLIPEncoderLayer(config=config, quant_config=quant_config) for _ in range(num_hidden_layers) ]) def forward(self, inputs_embeds: torch.Tensor): hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states) return hidden_states class CLIPVisionTransformer(nn.Module): def __init__(self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPVisionEmbeddings(config) # NOTE: This typo of "layrnorm" is not fixed on purpose to match # the original transformers code and name of the model weights. self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = CLIPEncoder( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override) def forward( self, pixel_values: torch.Tensor, ) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) hidden_states = self.encoder(inputs_embeds=hidden_states) return hidden_states class CLIPVisionModel(nn.Module): config_class = CLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: CLIPVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None): super().__init__() self.vision_model = CLIPVisionTransformer( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override) def forward(self, pixel_values: Optional[torch.Tensor] = None): return self.vision_model(pixel_values=pixel_values) @property def device(self): return next(self.parameters()).device