from abc import ABC, abstractmethod import torch from typing import Dict, List class LogitsProcessor(ABC): @abstractmethod def __call__(self, logits: torch.Tensor, output_tokens: List[List[int]]) -> None: """Logits are edited in-place""" pass class BiasLogitsProcessor(LogitsProcessor): """This is to enable logit_bias in the OpenAI server, an additive bias on the original logit values. Args: biases: Dict of bias values. Each key corresponds to the the token id. """ def __init__(self, biases: Dict[int, float]): super().__init__() self.biases = biases if not biases: return self.keys = torch.tensor(list(self.biases.keys()), dtype=torch.long) self.values = torch.tensor(list(self.biases.values()), dtype=torch.float) def __call__(self, logits: torch.Tensor, output_tokens: List[List[int]]) -> None: if not self.biases: return values = self.values.to(logits.device) keys = self.keys.to(logits.device) logits[0, keys] += values class BanEOSUntil(LogitsProcessor): """Bans the EOS token until a certain condition is met. In this case, 'number of output tokens'. With this condition, both 'min_tokens' and 'ignore_eos' parameters can be handled gracefully.""" def __init__(self, min_tokens: int, eos_token_id: int): super().__init__() self._min_tokens = min_tokens self._eos_token_id = eos_token_id def __call__(self, logits: torch.Tensor, output_tokens: List[List[int]]) -> None: for i in range(len(output_tokens)): if len(output_tokens[i]) < self._min_tokens: logits[i][self._eos_token_id] = -float("inf")