from typing import Any, Dict, List, Optional import torch from torch.nn.parameter import Parameter from aphrodite._quant_C import quant_ops as ops from aphrodite.common.utils import is_hip from aphrodite.modeling.layers.linear import LinearBase from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import (QuantizationConfig, QuantizeMethodBase) class SqueezeLLMConfig(QuantizationConfig): """Config class for SqueezeLLM. Reference: https://arxiv.org/pdf/2306.07629 """ def __init__( self, weight_bits: int, ) -> None: self.weight_bits = weight_bits if self.weight_bits != 4: raise ValueError( "Currently, only 4-bit weight quantization is supported for " f"SqueezeLLM, but got {self.weight_bits} bits.") self.pack_factor = 32 // self.weight_bits def __repr__(self) -> str: return f"SqueezeLLMConfig(weight_bits={self.weight_bits})" def get_name(self) -> str: return "squeezellm" def get_supported_act_dtypes(self) -> List[torch.dtype]: return [torch.half] def get_min_capability(self) -> int: return 70 @staticmethod def get_config_filenames() -> List[str]: return ["quant_config.json"] @classmethod def from_config(cls, config: Dict[str, Any]) -> "SqueezeLLMConfig": weight_bits = cls.get_from_keys(config, ["wbits"]) return cls(weight_bits) def get_quant_method( self, layer: torch.nn.Module) -> Optional["SqueezeLLMLinearMethod"]: if isinstance(layer, LinearBase): return SqueezeLLMLinearMethod(self) return def get_scaled_act_names(self) -> List[str]: return [] class SqueezeLLMLinearMethod(QuantizeMethodBase): """Linear method for SqueezeLLM. Args: quant_config: The SqueezeLLM quantization config. """ def __init__(self, quant_config: SqueezeLLMConfig): self.quant_config = quant_config def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): if input_size_per_partition % self.quant_config.pack_factor != 0: raise ValueError( "The input size is not aligned with the quantized " "weight shape. This can be caused by too large " "tensor parallel size.") output_size_per_partition = sum(output_partition_sizes) qweight = Parameter( torch.empty( input_size_per_partition // self.quant_config.pack_factor, output_size_per_partition, dtype=torch.int32, ), requires_grad=False, ) set_weight_attrs( qweight, { "input_dim": 0, "output_dim": 1, "packed_dim": 0, "pack_factor": self.quant_config.pack_factor, }) lookup_table = Parameter( torch.empty( output_size, self.quant_config.weight_bits**2, dtype=params_dtype, ), requires_grad=False, ) set_weight_attrs(lookup_table, { "output_dim": 0, }) layer.register_parameter("qweight", qweight) set_weight_attrs(qweight, extra_weight_attrs) layer.register_parameter("lookup_table", lookup_table) set_weight_attrs(lookup_table, extra_weight_attrs) def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: qweight = layer.qweight lookup_table = layer.lookup_table out_shape = x.shape[:-1] + (qweight.shape[-1], ) reshaped_x = x.reshape(-1, x.shape[-1]) if is_hip(): out_f = torch.zeros(out_shape, dtype=torch.float) ops.squeezellm_gemm(reshaped_x, qweight, out_f, lookup_table) out = out_f.to(dtype=torch.float16) else: # NOTE: The output tensor should be zero-initialized. out = torch.zeros(out_shape, dtype=torch.float16) ops.squeezellm_gemm(reshaped_x, qweight, out, lookup_table) if bias is not None: out.add_(bias) return out.reshape(out_shape)