import time from typing import Iterable, List, Optional, Type, Union from loguru import logger from transformers import GenerationConfig, PreTrainedTokenizer import aphrodite from aphrodite.common.config import (CacheConfig, DecodingConfig, DeviceConfig, LoRAConfig, ModelConfig, ParallelConfig, SchedulerConfig, SpeculativeConfig, VisionLanguageConfig) from aphrodite.common.logger import setup_logger from aphrodite.common.outputs import RequestOutput from aphrodite.common.sampling_params import SamplingParams from aphrodite.common.sequence import (MultiModalData, SamplerOutput, Sequence, SequenceGroup, SequenceStage) from aphrodite.common.utils import Counter from aphrodite.engine.args_tools import EngineArgs from aphrodite.engine.metrics import StatLogger, Stats from aphrodite.engine.output_processor.interfaces import \ SequenceGroupOutputProcessor from aphrodite.engine.output_processor.stop_checker import StopChecker from aphrodite.engine.output_processor.util import \ create_output_by_sequence_group from aphrodite.engine.ray_tools import initialize_ray_cluster from aphrodite.executor.executor_base import ExecutorBase from aphrodite.lora.request import LoRARequest from aphrodite.processing.scheduler import Scheduler, SchedulerOutputs from aphrodite.transformers_utils.detokenizer import Detokenizer from aphrodite.transformers_utils.tokenizer_group import (BaseTokenizerGroup, get_tokenizer_group) _LOCAL_LOGGING_INTERVAL_SEC = 5 def _load_generation_config_dict(model_config: ModelConfig): try: return GenerationConfig.from_pretrained( model_config.model, revision=model_config.revision, ).to_diff_dict() except OSError: # Not found. return {} class AphroditeEngine: """An LLM engine that receives requests and generates texts. This is the main class for the Aphrodite engine. It receives requests from clients and generates texts from the LLM. It includes a tokenizer, a language model (possibly distributed across multiple GPUs), and GPU memory space allocated for intermediate states (aka KV cache). This class utilizes iteration-level scheduling and efficient memory management to maximize the serving throughput. The `LLM` class wraps this class for offline batched inference and the `AsyncAphrodite` class wraps this class for online serving. NOTE: The config arguments are derived from the `EngineArgs` class. For the comprehensive list of arguments, see `EngineArgs`. Args: model_config: The configuration related to the LLM model. cache_config: The configuration related to the KV cache memory management. parallel_config: The configuration related to distributed execution. scheduler_config: The configuration related to the request scheduler. device_config: The configuration related to the device. lora_config (Optional): The configuration related to serving multi-LoRA. vision_language_config (Optional): The configuration related to vision language models. speculative_config (Optional): The configuration related to speculative decoding. executor_class: The model executor class for managing distributed execution. log_stats: Whether to log statistics. """ def __init__( self, model_config: ModelConfig, cache_config: CacheConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], vision_language_config: Optional[VisionLanguageConfig], speculative_config: Optional[SpeculativeConfig], decoding_config: Optional[DecodingConfig], executor_class: Type[ExecutorBase], log_stats: bool, ) -> None: logger.info( f"Initializing the Aphrodite Engine (v{aphrodite.__version__}) " "with the following config:\n" f"Model = {model_config.model!r}\n" f"Speculative Config = {speculative_config!r}\n" f"DataType = {model_config.dtype}\n" f"Model Load Format = {model_config.load_format}\n" f"Number of GPUs = {parallel_config.tensor_parallel_size}\n" f"Disable Custom All-Reduce = " f"{parallel_config.disable_custom_all_reduce}\n" f"Quantization Format = {model_config.quantization}\n" f"Context Length = {model_config.max_model_len}\n" f"Enforce Eager Mode = {model_config.enforce_eager}\n" f"KV Cache Data Type = {cache_config.cache_dtype}\n" f"KV Cache Params Path = {model_config.quantization_param_path}\n" f"Device = {device_config.device}\n" f"Guided Decoding Backend = {decoding_config!r}\n") # TODO: Print more configs in debug mode. self.model_config = model_config self.cache_config = cache_config self.lora_config = lora_config self.vision_language_config = vision_language_config self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config self.speculative_config = speculative_config self.decoding_config = decoding_config or DecodingConfig() self.log_stats = log_stats self._verify_args() self._init_tokenizer() self.detokenizer = Detokenizer(self.tokenizer) self.seq_counter = Counter() self.generation_config_fields = _load_generation_config_dict( model_config) self.model_executor = executor_class( model_config=model_config, cache_config=cache_config, parallel_config=parallel_config, scheduler_config=scheduler_config, device_config=device_config, lora_config=lora_config, vision_language_config=vision_language_config, speculative_config=speculative_config, ) self._initialize_kv_caches() # Ping the tokenizer to ensure it is loaded if # it runs on a separate process. self.tokenizer.ping() # Create the scheduler. # NOTE: the cache_config here have been updated with the numbers of # GPU and CPU blocks, which are profiled in the distributed executor. self.scheduler = Scheduler(scheduler_config, cache_config, lora_config) # Metric Logging. if self.log_stats: self.stat_logger = StatLogger( local_interval=_LOCAL_LOGGING_INTERVAL_SEC, labels=dict(model_name=model_config.model), ) self.stat_logger.info("cache_config", self.cache_config) # Create sequence output processor, e.g. for beam search or # speculative decoding. self.output_processor = ( SequenceGroupOutputProcessor.create_output_processor( self.scheduler_config, self.detokenizer, self.scheduler, self.seq_counter, self.get_tokenizer_for_seq, stop_checker=StopChecker( self.scheduler_config.max_model_len, self.get_tokenizer_for_seq, ), )) def _initialize_kv_caches(self) -> None: """Initialize the KV cache in the worker(s). The workers will determine the number of blocks in both the GPU cache and the swap CPU cache. """ num_gpu_blocks, num_cpu_blocks = ( self.model_executor.determine_num_available_blocks()) if self.cache_config.num_gpu_blocks_override is not None: num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override logger.info(f"Overriding {num_gpu_blocks=} with " f"{num_gpu_blocks_override=}") num_gpu_blocks = num_gpu_blocks_override self.cache_config.num_gpu_blocks = num_gpu_blocks self.cache_config.num_cpu_blocks = num_cpu_blocks self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks) @classmethod def from_engine_args(cls, engine_args: EngineArgs) -> "AphroditeEngine": """Creates an LLM engine from the engine arguments.""" # Create the engine configs. engine_config = engine_args.create_engine_config() # Initialize the cluster and specify the executor class. if engine_config.device_config.device_type == "neuron": from aphrodite.executor.neuron_executor import NeuronExecutor executor_class = NeuronExecutor elif engine_config.device_config.device_type == "cpu": from aphrodite.executor.cpu_executor import CPUExecutor executor_class = CPUExecutor elif engine_config.parallel_config.worker_use_ray: initialize_ray_cluster(engine_config.parallel_config) from aphrodite.executor.ray_gpu_executor import RayGPUExecutor executor_class = RayGPUExecutor else: assert engine_config.parallel_config.world_size == 1, ( "Ray is required if parallel_config.world_size > 1.") from aphrodite.executor.gpu_executor import GPUExecutor executor_class = GPUExecutor # Create the LLM engine. engine = cls(**engine_config.to_dict(), executor_class=executor_class, log_stats=not engine_args.disable_log_stats) return engine def __reduce__(self): # This is to ensure that the AphroditeEngine is not referenced in # the closure used to initialize Ray worker actors raise RuntimeError("AphroditeEngine should not be pickled!") def get_tokenizer(self) -> "PreTrainedTokenizer": return self.tokenizer.get_lora_tokenizer(None) def get_tokenizer_for_seq(self, sequence: Sequence) -> "PreTrainedTokenizer": return self.tokenizer.get_lora_tokenizer(sequence.lora_request) def _init_tokenizer(self, **tokenizer_init_kwargs): init_kwargs = dict( tokenizer_id=self.model_config.tokenizer, enable_lora=bool(self.lora_config), max_num_seqs=self.scheduler_config.max_num_seqs, max_input_length=None, tokenizer_mode=self.model_config.tokenizer_mode, trust_remote_code=self.model_config.trust_remote_code, revision=self.model_config.revision) init_kwargs.update(tokenizer_init_kwargs) self.tokenizer: BaseTokenizerGroup = get_tokenizer_group( self.parallel_config.tokenizer_pool_config, **init_kwargs) if len(self.get_tokenizer()) != self.model_config.get_vocab_size(): logger.warning( f"The tokenizer's vocabulary size {len(self.get_tokenizer())}" f" does not match the model's vocabulary size " f"{self.model_config.get_vocab_size()}.") self.model_config.hf_config.tokenizer_vocab_size = len( self.get_tokenizer()) def _verify_args(self) -> None: self.model_config.verify_with_parallel_config(self.parallel_config) self.cache_config.verify_with_parallel_config(self.parallel_config) if self.lora_config: self.lora_config.verify_with_model_config(self.model_config) self.lora_config.verify_with_scheduler_config( self.scheduler_config) def encode_request( self, request_id: str, prompt: Optional[str], prompt_token_ids: Optional[List[int]] = None, lora_request: Optional[LoRARequest] = None, ): if prompt_token_ids is None: assert prompt is not None prompt_token_ids = self.tokenizer.encode(request_id=request_id, prompt=prompt, lora_request=lora_request) return prompt_token_ids def add_request( self, request_id: str, prompt: Optional[str], sampling_params: SamplingParams, prompt_token_ids: Optional[List[int]] = None, arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, multi_modal_data: Optional[MultiModalData] = None, ) -> None: """Add a request to the engine's request pool. The request is added to the request pool and will be processed by the scheduler as `engine.step()` is called. The exact scheduling policy is determined by the scheduler. Args: request_id: The unique ID of the request. prompt: The prompt string. Can be None if prompt_token_ids is provided. sampling_params: The sampling parameters for text generation. prompt_token_ids: The token IDs of the prompt. If None, we use the tokenizer to convert the prompts to token IDs. arrival_time: The arrival time of the request. If None, we use the current monotonic time. multi_modal_data: The multimodal data for the request. Details: - Set arrival_time to the current time if it is None. - Set prompt_token_ids to the encoded prompt if it is None. - Create `best_of` number of :class:`~aphrodite.Sequence` objects. - Create a :class:`~aphrodite.SequenceGroup` object from the list of :class:`~aphrodite.Sequence`. - Add the :class:`~aphrodite.SequenceGroup` object to the scheduler. Example: >>> # initialize engine >>> engine = AphroditeEngine.from_engine_args(engine_args) >>> # set request arguments >>> example_prompt = "Who is the president of the United States?" >>> sampling_params = SamplingParams(temperature=0.0) >>> request_id = 0 >>> >>> # add the request to the engine >>> engine.add_request( >>> str(request_id), >>> example_prompt, >>> SamplingParams(temperature=0.0)) >>> # continue the request processing >>> ... """ if lora_request is not None and not self.lora_config: raise ValueError(f"Got lora_request {lora_request} but LoRA is " "not enabled!") max_log_probs = self.get_model_config().max_log_probs if (sampling_params.logprobs and sampling_params.logprobs > max_log_probs) or ( sampling_params.prompt_logprobs and sampling_params.prompt_logprobs > max_log_probs): raise ValueError(f"Cannot request more than " f"{max_log_probs} logprobs. " "Please increase the max_log_probs.") if arrival_time is None: arrival_time = time.monotonic() prompt_token_ids = self.encode_request( request_id=request_id, prompt=prompt, prompt_token_ids=prompt_token_ids, lora_request=lora_request, ) # Create the sequences. block_size = self.cache_config.block_size seq_id = next(self.seq_counter) eos_token_id = self.tokenizer.get_lora_tokenizer( lora_request).eos_token_id seq = Sequence( seq_id, prompt, prompt_token_ids, block_size, eos_token_id, lora_request, ) # Defensive copy of SamplingParams, which are used by the sampler, # this doesn't deep-copy LogitsProcessor objects sampling_params = sampling_params.clone() # Inject the eos token id into the sampling_params to support min_tokens # processing sampling_params.eos_token_id = seq.eos_token_id sampling_params.update_from_generation_config( self.generation_config_fields) # Create the sequence group. seq_group = SequenceGroup(request_id, [seq], sampling_params, arrival_time, lora_request, multi_modal_data) # Add the sequence group to the scheduler. self.scheduler.add_seq_group(seq_group) def abort_request(self, request_id: Union[str, Iterable[str]]) -> None: """Aborts a request(s) with the given ID. Args: request_id: The ID(s) of the request to abort. Details: - Refer to the :meth:`~aphrodite.processing.scheduler.Scheduler.abort_seq_group` from class :class:`~aphrodite.processing.scheduler.Scheduler`. Example: >>> # initialize engine and add a request with request_id >>> request_id = str(0) >>> # abort the request >>> engine.abort_request(request_id) """ self.scheduler.abort_seq_group(request_id) def get_model_config(self) -> ModelConfig: """Gets the model configuration.""" return self.model_config def get_num_unfinished_requests(self) -> int: """Gets the number of unfinished requests.""" return self.scheduler.get_num_unfinished_seq_groups() def has_unfinished_requests(self) -> bool: """Returns True if there are unfinished requests.""" return self.scheduler.has_unfinished_seqs() def _process_model_outputs( self, output: List[SamplerOutput], scheduled_seq_groups: List[SequenceGroup], ignored_seq_groups: List[SequenceGroup]) -> List[RequestOutput]: """Apply the model output to the sequences in the scheduled seq groups. Returns RequestOutputs that can be returned to the client. """ now = time.time() # Organize outputs by [sequence group][step] instead of # [step][sequence group]. output_by_sequence_group = create_output_by_sequence_group( sampler_outputs=output, num_seq_groups=len(scheduled_seq_groups)) # Update the scheduled sequence groups with the model outputs. for scheduled_seq_group, outputs in zip(scheduled_seq_groups, output_by_sequence_group): seq_group = scheduled_seq_group.seq_group seq_group.update_num_computed_tokens( scheduled_seq_group.token_chunk_size) # If all sequences in the sequence group are in DECODE, then we can # process the output tokens. Otherwise, they are (chunked) prefill # samples and should not be processed. stages = [seq.data._stage for seq in seq_group.seqs_dict.values()] if all(stage == SequenceStage.DECODE for stage in stages): self.output_processor.process_outputs(seq_group, outputs) # Free the finished sequence groups. self.scheduler.free_finished_seq_groups() # Create the outputs. request_outputs: List[RequestOutput] = [] for scheduled_seq_group in scheduled_seq_groups: seq_group = scheduled_seq_group.seq_group seq_group.maybe_set_first_token_time(now) request_output = RequestOutput.from_seq_group(seq_group) request_outputs.append(request_output) for seq_group in ignored_seq_groups: request_output = RequestOutput.from_seq_group(seq_group) request_outputs.append(request_output) return request_outputs def step(self) -> List[RequestOutput]: """Performs one decoding iteration and returns newly generated results. .. figure:: https://i.imgur.com/sv2HssD.png :alt: Overview of the step function :align: center Overview of the step function. Details: - Step 1: Schedules the sequences to be executed in the next iteration and the token blocks to be swapped in/out/copy. - Depending on the scheduling policy, sequences may be `preempted/reordered`. - A Sequence Group (SG) refer to a group of sequences that are generated from the same prompt. - Step 2: Calls the distributed executor to execute the model. - Step 3: Processes the model output. This mainly includes: - Decodes the relevant outputs. - Updates the scheduled sequence groups with model outputs based on its `sampling parameters` (`use_beam_search` or not). - Frees the finished sequence groups. - Finally, it creates and returns the newly generated results. Example: >>> # Please see the example/ folder for more detailed examples. >>> >>> # initialize engine and request arguments >>> engine = AphroditeEngine.from_engine_args(engine_args) >>> example_inputs = [(0, "What is LLM?", >>> SamplingParams(temperature=0.0))] >>> >>> # Start the engine with an event loop >>> while True: >>> if example_inputs: >>> req_id, prompt, sampling_params = example_inputs.pop(0) >>> engine.add_request(str(req_id), prompt, sampling_params) >>> >>> # continue the request processing >>> request_outputs = engine.step() >>> for request_output in request_outputs: >>> if request_output.finished: >>> # return or show the request output >>> >>> if not (engine.has_unfinished_requests() or example_inputs): >>> break """ seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule() if not scheduler_outputs.is_empty(): output = self.model_executor.execute_model( seq_group_metadata_list=seq_group_metadata_list, blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in, blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out, blocks_to_copy=scheduler_outputs.blocks_to_copy, num_lookahead_slots=scheduler_outputs.num_lookahead_slots) else: output = [] request_outputs = self._process_model_outputs( output, scheduler_outputs.scheduled_seq_groups, scheduler_outputs.ignored_seq_groups) # Log stats. if self.log_stats: self.stat_logger.log( self._get_stats(scheduler_outputs, model_output=output)) return request_outputs def do_log_stats(self) -> None: """Forced log when no requests active.""" if self.log_stats: self.stat_logger.log(self._get_stats(scheduler_outputs=None)) def _get_stats( self, scheduler_outputs: Optional[SchedulerOutputs], model_output: Optional[List[SamplerOutput]] = None) -> Stats: """Get Stats to be Logged to Prometheus. Args: scheduler_outputs: Optional, used to populate metrics related to the scheduled batch, model_output: Optional, used to emit speculative decoding metrics which are created by the workers. """ now = time.monotonic() # KV Cache Usage in %. num_total_gpu = self.cache_config.num_gpu_blocks num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks() gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu) num_total_cpu = self.cache_config.num_cpu_blocks cpu_cache_usage = 0.0 if num_total_cpu > 0: num_free_cpu = ( self.scheduler.block_manager.get_num_free_cpu_blocks()) cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu) # Scheduler State num_running = len(self.scheduler.running) num_swapped = len(self.scheduler.swapped) num_waiting = len(self.scheduler.waiting) # Iteration stats if we have scheduler output. num_prompt_tokens = 0 num_generation_tokens = 0 time_to_first_tokens = [] time_per_output_tokens = [] time_e2e_requests = [] if scheduler_outputs is not None: prompt_run = scheduler_outputs.num_prefill_groups > 0 # Number of Tokens. if prompt_run: num_prompt_tokens = sum( len(scheduled_seq_group.seq_group.prompt_token_ids) for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups) num_generation_tokens = sum( scheduled_seq_group.seq_group.num_seqs() for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups) else: num_generation_tokens = scheduler_outputs.num_batched_tokens # Latency Timings. time_last_iters = [] for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups: seq_group = scheduled_seq_group.seq_group # Time since last token. # (n.b. updates seq_group.metrics.last_token_time) time_last_iters.append(seq_group.get_last_latency(now)) # Time since arrival for all finished requests. if seq_group.is_finished(): time_e2e_requests.append(now - seq_group.metrics.arrival_time) time_to_first_tokens = time_last_iters if prompt_run else [] time_per_output_tokens = [] if prompt_run else time_last_iters # Spec decode, if enabled, emits specialized metrics from the worker in # sampler output. if model_output and (model_output[0].spec_decode_worker_metrics is not None): spec_decode_metrics = model_output[0].spec_decode_worker_metrics else: spec_decode_metrics = None return Stats( now=now, num_running=num_running, num_swapped=num_swapped, num_waiting=num_waiting, gpu_cache_usage=gpu_cache_usage, cpu_cache_usage=cpu_cache_usage, num_prompt_tokens=num_prompt_tokens, num_generation_tokens=num_generation_tokens, time_to_first_tokens=time_to_first_tokens, time_per_output_tokens=time_per_output_tokens, time_e2e_requests=time_e2e_requests, spec_decode_metrics=spec_decode_metrics, ) def add_lora(self, lora_request: LoRARequest) -> bool: return self.model_executor.add_lora(lora_request) def remove_lora(self, lora_id: int) -> bool: return self.model_executor.remove_lora(lora_id) def list_loras(self) -> List[int]: return self.model_executor.list_loras() def check_health(self) -> None: self.model_executor.check_health() setup_logger()