import os import time from contextlib import contextmanager from typing import TYPE_CHECKING, Any, ClassVar, Dict, Iterable, List, Optional from typing import Sequence as GenericSequence from typing import Type, TypeVar, Union from loguru import logger from transformers import PreTrainedTokenizer from aphrodite.common.config import (CacheConfig, DecodingConfig, DeviceConfig, EngineConfig, LoadConfig, LoRAConfig, ModelConfig, MultiModalConfig, ParallelConfig, PromptAdapterConfig, SchedulerConfig, SpeculativeConfig) from aphrodite.common.logger import setup_logger from aphrodite.common.outputs import (EmbeddingRequestOutput, RequestOutput, RequestOutputFactory) from aphrodite.common.pooling_params import PoolingParams from aphrodite.common.sampling_params import SamplingParams from aphrodite.common.sequence import (EmbeddingSequenceGroupOutput, ExecuteModelRequest, PoolerOutput, SamplerOutput, Sequence, SequenceGroup, SequenceGroupMetadata, SequenceStatus) from aphrodite.common.utils import Counter from aphrodite.engine.args_tools import EngineArgs from aphrodite.engine.metrics import (LoggingStatLogger, PrometheusStatLogger, StatLoggerBase, Stats) from aphrodite.engine.output_processor.interfaces import ( SequenceGroupOutputProcessor) from aphrodite.engine.output_processor.stop_checker import StopChecker from aphrodite.engine.output_processor.util import ( create_output_by_sequence_group) from aphrodite.executor.executor_base import ExecutorBase from aphrodite.executor.ray_utils import initialize_ray_cluster from aphrodite.inputs import INPUT_REGISTRY, LLMInputs, PromptInputs from aphrodite.lora.request import LoRARequest from aphrodite.processing.scheduler import (ScheduledSequenceGroup, Scheduler, SchedulerOutputs) from aphrodite.prompt_adapter.request import PromptAdapterRequest from aphrodite.transformers_utils.config import try_get_generation_config from aphrodite.transformers_utils.detokenizer import Detokenizer from aphrodite.transformers_utils.tokenizer_group import ( BaseTokenizerGroup, init_tokenizer_from_configs) from aphrodite.version import __version__ as APHRODITE_VERSION _LOCAL_LOGGING_INTERVAL_SEC = 5 APHRODITE_USE_RAY_SPMD_WORKER = bool( os.getenv("APHRODITE_USE_RAY_SPMD_WORKER", 0)) def _load_generation_config_dict(model_config: ModelConfig) -> Dict[str, Any]: config = try_get_generation_config( model_config.model, trust_remote_code=model_config.trust_remote_code, revision=model_config.revision, ) if config is None: return {} return config.to_diff_dict() _O = TypeVar("_O", RequestOutput, EmbeddingRequestOutput) class AphroditeEngine: """An LLM engine that receives requests and generates texts. This is the main class for the Aphrodite engine. It receives requests from clients and generates texts from the LLM. It includes a tokenizer, a language model (possibly distributed across multiple GPUs), and GPU memory space allocated for intermediate states (aka KV cache). This class utilizes iteration-level scheduling and efficient memory management to maximize the serving throughput. The `LLM` class wraps this class for offline batched inference and the `AsyncAphrodite` class wraps this class for online serving. NOTE: The config arguments are derived from the `EngineArgs` class. For the comprehensive list of arguments, see `EngineArgs`. Args: model_config: The configuration related to the LLM model. cache_config: The configuration related to the KV cache memory management. parallel_config: The configuration related to distributed execution. scheduler_config: The configuration related to the request scheduler. device_config: The configuration related to the device. lora_config (Optional): The configuration related to serving multi-LoRA. multimodal_config (Optional): The configuration related to multimodal models. speculative_config (Optional): The configuration related to speculative decoding. executor_class: The model executor class for managing distributed execution. prompt_adapter_config (Optional): The configuration related to serving prompt adapters. log_stats: Whether to log statistics. """ DO_VALIDATE_OUTPUT: ClassVar[bool] = False """A flag to toggle whether to validate the type of request output.""" @classmethod @contextmanager def enable_output_validation(cls): cls.DO_VALIDATE_OUTPUT = True yield cls.DO_VALIDATE_OUTPUT = False @classmethod def validate_output( cls, output: object, output_type: Type[_O], ) -> _O: do_validate = cls.DO_VALIDATE_OUTPUT if ((TYPE_CHECKING or do_validate) and not isinstance(output, output_type)): raise TypeError(f"Expected output of type {output_type}, " f"but found type {type(output)}") return output @classmethod def validate_outputs( cls, outputs: GenericSequence[object], output_type: Type[_O], ) -> List[_O]: do_validate = cls.DO_VALIDATE_OUTPUT outputs_: List[_O] if TYPE_CHECKING or do_validate: outputs_ = [] for output in outputs: if not isinstance(output, output_type): raise TypeError(f"Expected output of type {output_type}, " f"but found type {type(output)}") outputs_.append(output) else: outputs_ = outputs return outputs_ tokenizer: Optional[BaseTokenizerGroup] def __init__( self, model_config: ModelConfig, cache_config: CacheConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, device_config: DeviceConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], multimodal_config: Optional[MultiModalConfig], speculative_config: Optional[SpeculativeConfig], decoding_config: Optional[DecodingConfig], prompt_adapter_config: Optional[PromptAdapterConfig], executor_class: Type[ExecutorBase], log_stats: bool, stat_loggers: Optional[Dict[str, StatLoggerBase]] = None, ) -> None: try: import aphrodite.commit_id commit_id = True except ImportError: commit_id = False config_dict = { "Model": model_config.model, "Speculative Config": speculative_config, "DataType": model_config.dtype, "Model Load Format": load_config.load_format, "Tensor Parallel Size": parallel_config.tensor_parallel_size, "Pipeline Parallel Size": parallel_config.pipeline_parallel_size, "Disable Custom All-Reduce": parallel_config.disable_custom_all_reduce, "Quantization Format": model_config.quantization, "Context Length": model_config.max_model_len, "Enforce Eager Mode": model_config.enforce_eager, "Prefix Caching": cache_config.enable_prefix_caching, "KV Cache DataType": cache_config.cache_dtype, "Device": device_config.device, "Rope Scaling": model_config.rope_scaling, "Guided Decoding Backend": decoding_config } logger.info("-" * 85) if not commit_id: logger.info( f"Initializing Aphrodite Engine (v{APHRODITE_VERSION}) " "with the following config:") else: logger.info(f"Initializing Aphrodite Engine (v{APHRODITE_VERSION} " f"commit {aphrodite.__short_commit__}) with the " "following config:") for key, value in config_dict.items(): if value is not None and not ((key == "Model Load Format" or key ==\ "KV Cache DataType") and value == \ "auto"): logger.info(f"{key} = {value!r}") logger.info("-" * 85) # TODO: Print more configs in debug mode. self.model_config = model_config self.cache_config = cache_config self.lora_config = lora_config self.multimodal_config = multimodal_config self.parallel_config = parallel_config self.scheduler_config = scheduler_config self.device_config = device_config self.speculative_config = speculative_config self.load_config = load_config self.decoding_config = decoding_config or DecodingConfig() self.prompt_adapter_config = prompt_adapter_config self.log_stats = log_stats if not self.model_config.skip_tokenizer_init: self.tokenizer = self._init_tokenizer() self.detokenizer = Detokenizer(self.tokenizer) else: self.tokenizer = None self.detokenizer = None self.seq_counter = Counter() self.generation_config_fields = _load_generation_config_dict( model_config) self.input_processor = INPUT_REGISTRY.create_input_processor( self.model_config) self.model_executor = executor_class( model_config=model_config, cache_config=cache_config, parallel_config=parallel_config, scheduler_config=scheduler_config, device_config=device_config, lora_config=lora_config, multimodal_config=multimodal_config, speculative_config=speculative_config, load_config=load_config, prompt_adapter_config=prompt_adapter_config, ) if not self.model_config.embedding_mode: self._initialize_kv_caches() if self.tokenizer: # Ping the tokenizer to ensure liveness if it runs in a # different process. self.tokenizer.ping() # Create the scheduler. # NOTE: the cache_config here have been updated with the numbers of # GPU and CPU blocks, which are profiled in the distributed executor. self.scheduler = [ Scheduler(scheduler_config, cache_config, lora_config, parallel_config.pipeline_parallel_size) for _ in range(parallel_config.pipeline_parallel_size) ] # Metric Logging. if self.log_stats: if stat_loggers is not None: self.stat_loggers = stat_loggers else: self.stat_loggers = { "logging": LoggingStatLogger( local_interval=_LOCAL_LOGGING_INTERVAL_SEC), "prometheus": PrometheusStatLogger( local_interval=_LOCAL_LOGGING_INTERVAL_SEC, labels=dict(model_name=model_config.served_model_name), max_model_len=self.model_config.max_model_len), } self.stat_loggers["prometheus"].info("cache_config", self.cache_config) # Create sequence output processor, e.g. for beam search or # speculative decoding. self.output_processor = ( SequenceGroupOutputProcessor.create_output_processor( self.scheduler_config, self.detokenizer, self.scheduler, self.seq_counter, self.get_tokenizer_for_seq, stop_checker=StopChecker( self.scheduler_config.max_model_len, self.get_tokenizer_for_seq, ), )) def _initialize_kv_caches(self) -> None: """Initialize the KV cache in the worker(s). The workers will determine the number of blocks in both the GPU cache and the swap CPU cache. """ num_gpu_blocks, num_cpu_blocks = ( self.model_executor.determine_num_available_blocks()) if self.cache_config.num_gpu_blocks_override is not None: num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override logger.info(f"Overriding {num_gpu_blocks=} with " f"{num_gpu_blocks_override=}") num_gpu_blocks = num_gpu_blocks_override self.cache_config.num_gpu_blocks = num_gpu_blocks self.cache_config.num_cpu_blocks = num_cpu_blocks self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks) @classmethod def _get_executor_cls(cls, engine_config: EngineConfig) -> Type[ExecutorBase]: distributed_executor_backend = ( engine_config.parallel_config.distributed_executor_backend) # Initialize the cluster and specify the executor class. if isinstance(distributed_executor_backend, type): if not issubclass(distributed_executor_backend, ExecutorBase): raise TypeError( "distributed_executor_backend must be a subclass of " f"ExecutorBase. Got {distributed_executor_backend}.") if distributed_executor_backend.uses_ray: # type: ignore initialize_ray_cluster(engine_config.parallel_config) executor_class = distributed_executor_backend elif engine_config.device_config.device_type == "neuron": from aphrodite.executor.neuron_executor import NeuronExecutor executor_class = NeuronExecutor elif engine_config.device_config.device_type == "tpu": if distributed_executor_backend == "ray": initialize_ray_cluster(engine_config.parallel_config) from aphrodite.executor.ray_tpu_executor import RayTPUExecutor executor_class = RayTPUExecutor else: assert distributed_executor_backend is None from aphrodite.executor.tpu_executor import TPUExecutor executor_class = TPUExecutor elif engine_config.device_config.device_type == "cpu": from aphrodite.executor.cpu_executor import CPUExecutor executor_class = CPUExecutor elif engine_config.device_config.device_type == "openvino": from aphrodite.executor.openvino_executor import OpenVINOExecutor executor_class = OpenVINOExecutor elif engine_config.device_config.device_type == "xpu": if distributed_executor_backend == "ray": initialize_ray_cluster(engine_config.parallel_config) from aphrodite.executor.ray_xpu_executor import RayXPUExecutor executor_class = RayXPUExecutor else: from aphrodite.executor.xpu_executor import XPUExecutor executor_class = XPUExecutor elif distributed_executor_backend == "ray": initialize_ray_cluster(engine_config.parallel_config) from aphrodite.executor.ray_gpu_executor import RayGPUExecutor executor_class = RayGPUExecutor elif distributed_executor_backend == "mp": from aphrodite.executor.multiproc_gpu_executor import ( MultiprocessingGPUExecutor) assert not APHRODITE_USE_RAY_SPMD_WORKER, ( "multiprocessing distributed executor backend does not " "support APHRODITE_USE_RAY_SPMD_WORKER=1") executor_class = MultiprocessingGPUExecutor else: from aphrodite.executor.gpu_executor import GPUExecutor executor_class = GPUExecutor return executor_class @classmethod def from_engine_args( cls, engine_args: EngineArgs, stat_loggers: Optional[Dict[str, StatLoggerBase]] = None, ) -> "AphroditeEngine": """Creates an LLM engine from the engine arguments.""" # Create the engine configs. engine_config = engine_args.create_engine_config() executor_class = cls._get_executor_cls(engine_config) # Create the LLM engine. engine = cls( **engine_config.to_dict(), executor_class=executor_class, log_stats=not engine_args.disable_log_stats, stat_loggers=stat_loggers, ) return engine def __reduce__(self): # This is to ensure that the AphroditeEngine is not referenced in # the closure used to initialize Ray worker actors raise RuntimeError("AphroditeEngine should not be pickled!") def __del__(self): # Shutdown the model executor when engine is garbage collected. # Use getattr since __init__ can fail before the field is set if model_executor := getattr(self, "model_executor", None): model_executor.shutdown() MISSING_TOKENIZER_GROUP_MSG = ("Unable to get tokenizer because " "skip_tokenizer_init is True") def get_tokenizer_group( self, fail_msg: str = MISSING_TOKENIZER_GROUP_MSG) -> BaseTokenizerGroup: if self.tokenizer is None: raise ValueError(fail_msg) return self.tokenizer def get_tokenizer( self, lora_request: Optional[LoRARequest] = None ) -> "PreTrainedTokenizer": return self.get_tokenizer_group().get_lora_tokenizer(lora_request) def get_tokenizer_for_seq(self, sequence: Sequence) -> "PreTrainedTokenizer": return self.get_tokenizer_group().get_lora_tokenizer( sequence.lora_request) def _init_tokenizer(self) -> BaseTokenizerGroup: return init_tokenizer_from_configs( model_config=self.model_config, scheduler_config=self.scheduler_config, parallel_config=self.parallel_config, enable_lora=bool(self.lora_config)) def _verify_args(self) -> None: self.model_config.verify_with_parallel_config(self.parallel_config) self.cache_config.verify_with_parallel_config(self.parallel_config) if self.lora_config: self.lora_config.verify_with_model_config(self.model_config) self.lora_config.verify_with_scheduler_config( self.scheduler_config) if self.prompt_adapter_config: self.prompt_adapter_config.verify_with_model_config( self.model_config) def _get_eos_token_id( self, lora_request: Optional[LoRARequest]) -> Optional[int]: if self.tokenizer is None: logger.warning("Using None for EOS token id because tokenizer " "is not initialized") return None return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id def _add_processed_request( self, request_id: str, processed_inputs: LLMInputs, params: Union[SamplingParams, PoolingParams], arrival_time: float, lora_request: Optional[LoRARequest], prompt_adapter_request: Optional[PromptAdapterRequest] = None, ) -> None: # Create the sequences. block_size = self.cache_config.block_size seq_id = next(self.seq_counter) eos_token_id = self._get_eos_token_id(lora_request) seq = Sequence(seq_id, processed_inputs, block_size, eos_token_id, lora_request, prompt_adapter_request) # Create a SequenceGroup based on SamplingParams or PoolingParams if isinstance(params, SamplingParams): seq_group = self._create_sequence_group_with_sampling( request_id, seq, params, arrival_time=arrival_time, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request, ) elif isinstance(params, PoolingParams): seq_group = self._create_sequence_group_with_pooling( request_id, seq, params, arrival_time=arrival_time, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request, ) else: raise ValueError( "Either SamplingParams or PoolingParams must be provided.") # Add the sequence group to the scheduler with least unfinished seqs. costs = [ scheduler.get_num_unfinished_seq_groups() for scheduler in self.scheduler ] min_cost_scheduler = self.scheduler[costs.index(min(costs))] min_cost_scheduler.add_seq_group(seq_group) def stop_remote_worker_execution_loop(self) -> None: self.model_executor.stop_remote_worker_execution_loop() def process_model_inputs( self, request_id: str, inputs: PromptInputs, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, ) -> LLMInputs: if isinstance(inputs, str): inputs = {"prompt": inputs} if "prompt_token_ids" not in inputs: tokenizer = self.get_tokenizer_group("prompts must be None if " "skip_tokenizer_init is True") prompt_token_ids = tokenizer.encode(request_id=request_id, prompt=inputs["prompt"], lora_request=lora_request) else: prompt_token_ids = inputs["prompt_token_ids"] if prompt_adapter_request: prompt_token_ids = \ [0] * prompt_adapter_request.prompt_adapter_num_virtual_tokens\ + prompt_token_ids llm_inputs = LLMInputs(prompt_token_ids=prompt_token_ids, prompt=inputs.get("prompt"), multi_modal_data=inputs.get("multi_modal_data")) return self.input_processor(llm_inputs) def add_request( self, request_id: str, inputs: PromptInputs, params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None, ) -> None: """Add a request to the engine's request pool. The request is added to the request pool and will be processed by the scheduler as `engine.step()` is called. The exact scheduling policy is determined by the scheduler. Args: request_id: The unique ID of the request. prompt: The prompt string. Can be None if prompt_token_ids is provided. params: Parameters for sampling or pooling. SamplingParams for text generation. PoolingParams for pooling. prompt_token_ids: The token IDs of the prompt. If None, we use the tokenizer to convert the prompts to token IDs. arrival_time: The arrival time of the request. If None, we use the current monotonic time. multi_modal_data: Multi modal data per request. Details: - Set arrival_time to the current time if it is None. - Set prompt_token_ids to the encoded prompt if it is None. - Create `best_of` number of :class:`~aphrodite.common.sequence` objects. - Create a :class:`~aphrodite.common.sequenceGroup` object from the list of :class:`~aphrodite.common.sequence`. - Add the :class:`~aphrodite.common.sequenceGroup` object to the scheduler. Example: >>> # initialize engine >>> engine = AphroditeEngine.from_engine_args(engine_args) >>> # set request arguments >>> example_prompt = "Who is the president of the United States?" >>> sampling_params = SamplingParams(temperature=0.0) >>> request_id = 0 >>> >>> # add the request to the engine >>> engine.add_request( >>> str(request_id), >>> example_prompt, >>> SamplingParams(temperature=0.0)) >>> # continue the request processing >>> ... """ if lora_request is not None and not self.lora_config: raise ValueError(f"Got lora_request {lora_request} but LoRA is " "not enabled!") if arrival_time is None: arrival_time = time.time() processed_inputs = self.process_model_inputs( request_id=request_id, inputs=inputs, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request) self._add_processed_request( request_id=request_id, processed_inputs=processed_inputs, params=params, arrival_time=arrival_time, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request, ) def _create_sequence_group_with_sampling( self, request_id: str, seq: Sequence, sampling_params: SamplingParams, arrival_time: float, lora_request: Optional[LoRARequest], prompt_adapter_request: Optional[PromptAdapterRequest] = None, ) -> SequenceGroup: """Creates a SequenceGroup with SamplingParams.""" max_logprobs = self.get_model_config().max_logprobs if (sampling_params.logprobs and sampling_params.logprobs > max_logprobs) or ( sampling_params.prompt_logprobs and sampling_params.prompt_logprobs > max_logprobs): raise ValueError(f"Cannot request more than " f"{max_logprobs} logprobs.") # Defensive copy of SamplingParams, which are used by the sampler, # this doesn't deep-copy LogitsProcessor objects sampling_params = sampling_params.clone() sampling_params.update_from_generation_config( self.generation_config_fields, seq.eos_token_id) # Create the sequence group. seq_group = SequenceGroup( request_id=request_id, seqs=[seq], arrival_time=arrival_time, sampling_params=sampling_params, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request) return seq_group def _create_sequence_group_with_pooling( self, request_id: str, seq: Sequence, pooling_params: PoolingParams, arrival_time: float, lora_request: Optional[LoRARequest], prompt_adapter_request: Optional[PromptAdapterRequest] = None, ) -> SequenceGroup: """Creates a SequenceGroup with PoolingParams.""" # Defensive copy of PoolingParams, which are used by the pooler pooling_params = pooling_params.clone() # Create the sequence group. seq_group = SequenceGroup( request_id=request_id, seqs=[seq], arrival_time=arrival_time, lora_request=lora_request, pooling_params=pooling_params, prompt_adapter_request=prompt_adapter_request) return seq_group def abort_request(self, request_id: Union[str, Iterable[str]]) -> None: """Aborts a request(s) with the given ID. Args: request_id: The ID(s) of the request to abort. Details: - Refer to the :meth:`~aphrodite.processing.scheduler.Scheduler.abort_seq_group` from class :class:`~aphrodite.processing.scheduler.Scheduler`. Example: >>> # initialize engine and add a request with request_id >>> request_id = str(0) >>> # abort the request >>> engine.abort_request(request_id) """ for scheduler in self.scheduler: scheduler.abort_seq_group(request_id) def get_model_config(self) -> ModelConfig: """Gets the model configuration.""" return self.model_config def get_parallel_config(self) -> ParallelConfig: """Gets the parallel configuration.""" return self.parallel_config def get_decoding_config(self) -> DecodingConfig: """Gets the decoding configuration.""" return self.decoding_config def get_scheduler_config(self) -> SchedulerConfig: """Gets the scheduler configuration.""" return self.scheduler_config def get_lora_config(self) -> LoRAConfig: """Gets the LoRA configuration.""" return self.lora_config def get_num_unfinished_requests(self) -> int: """Gets the number of unfinished requests.""" return sum(scheduler.get_num_unfinished_seq_groups() for scheduler in self.scheduler) def has_unfinished_requests(self) -> bool: """Returns True if there are unfinished requests.""" return any(scheduler.has_unfinished_seqs() for scheduler in self.scheduler) def has_unfinished_requests_for_virtual_engine( self, virtual_engine: int) -> bool: """ Returns True if there are unfinished requests for the virtual engine. """ return self.scheduler[virtual_engine].has_unfinished_seqs() def _process_sequence_group_outputs( self, seq_group: SequenceGroup, outputs: List[EmbeddingSequenceGroupOutput], ) -> None: seq_group.embeddings = outputs[0].embeddings for seq in seq_group.get_seqs(): seq.status = SequenceStatus.FINISHED_STOPPED return def _process_model_outputs( self, output: GenericSequence[Union[SamplerOutput, PoolerOutput]], scheduled_seq_groups: List[ScheduledSequenceGroup], ignored_seq_groups: List[SequenceGroup], seq_group_metadata_list: List[SequenceGroupMetadata], ) -> List[Union[RequestOutput, EmbeddingRequestOutput]]: """Apply the model output to the sequences in the scheduled seq groups. Returns RequestOutputs that can be returned to the client. """ now = time.time() # Organize outputs by [sequence group][step] instead of # [step][sequence group]. output_by_sequence_group = create_output_by_sequence_group( output, num_seq_groups=len(scheduled_seq_groups)) # Update the scheduled sequence groups with the model outputs. for scheduled_seq_group, outputs, seq_group_meta in zip( scheduled_seq_groups, output_by_sequence_group, seq_group_metadata_list): seq_group = scheduled_seq_group.seq_group seq_group.update_num_computed_tokens( scheduled_seq_group.token_chunk_size) if self.model_config.embedding_mode: self._process_sequence_group_outputs(seq_group, outputs) continue self.output_processor.process_prompt_logprob(seq_group, outputs) if seq_group_meta.do_sample: self.output_processor.process_outputs(seq_group, outputs) # Free the finished sequence groups. for scheduler in self.scheduler: scheduler.free_finished_seq_groups() # Create the outputs. request_outputs: List[Union[RequestOutput, EmbeddingRequestOutput]] = [] for scheduled_seq_group in scheduled_seq_groups: seq_group = scheduled_seq_group.seq_group seq_group.maybe_set_first_token_time(now) request_output = RequestOutputFactory.create(seq_group) request_outputs.append(request_output) for seq_group in ignored_seq_groups: request_output = RequestOutputFactory.create(seq_group) request_outputs.append(request_output) return request_outputs def step(self) -> List[Union[RequestOutput, EmbeddingRequestOutput]]: """Performs one decoding iteration and returns newly generated results. .. figure:: https://i.imgur.com/sv2HssD.png :alt: Overview of the step function :align: center Overview of the step function. Details: - Step 1: Schedules the sequences to be executed in the next iteration and the token blocks to be swapped in/out/copy. - Depending on the scheduling policy, sequences may be `preempted/reordered`. - A Sequence Group (SG) refer to a group of sequences that are generated from the same prompt. - Step 2: Calls the distributed executor to execute the model. - Step 3: Processes the model output. This mainly includes: - Decodes the relevant outputs. - Updates the scheduled sequence groups with model outputs based on its `sampling parameters` (`use_beam_search` or not). - Frees the finished sequence groups. - Finally, it creates and returns the newly generated results. Example: >>> # Please see the example/ folder for more detailed examples. >>> >>> # initialize engine and request arguments >>> engine = AphroditeEngine.from_engine_args(engine_args) >>> example_inputs = [(0, "What is LLM?", >>> SamplingParams(temperature=0.0))] >>> >>> # Start the engine with an event loop >>> while True: >>> if example_inputs: >>> req_id, prompt, sampling_params = example_inputs.pop(0) >>> engine.add_request(str(req_id), prompt, sampling_params) >>> >>> # continue the request processing >>> request_outputs = engine.step() >>> for request_output in request_outputs: >>> if request_output.finished: >>> # return or show the request output >>> >>> if not (engine.has_unfinished_requests() or example_inputs): >>> break """ if self.parallel_config.pipeline_parallel_size > 1: raise NotImplementedError( "Pipeline parallelism is only supported through AsyncAphrodite " "as performance will be severely degraded otherwise.") seq_group_metadata_list, scheduler_outputs = self.scheduler[ 0].schedule() if not scheduler_outputs.is_empty(): finished_requests_ids = self.scheduler[ 0].get_and_reset_finished_requests_ids() execute_model_req = ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in, blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out, blocks_to_copy=scheduler_outputs.blocks_to_copy, num_lookahead_slots=scheduler_outputs.num_lookahead_slots, running_queue_size=scheduler_outputs.running_queue_size, finished_requests_ids=finished_requests_ids, ) output = self.model_executor.execute_model( execute_model_req=execute_model_req) else: output = [] request_outputs = self._process_model_outputs( output, scheduler_outputs.scheduled_seq_groups, scheduler_outputs.ignored_seq_groups, seq_group_metadata_list) # Log stats. self.do_log_stats(scheduler_outputs, output) if not self.has_unfinished_requests(): # Stop the execute model loop in parallel workers until there are # more requests to process. This avoids waiting indefinitely in # torch.distributed ops which may otherwise timeout, and unblocks # the RPC thread in the workers so that they can process any other # queued control plane messages, such as add/remove lora adapters. self.model_executor.stop_remote_worker_execution_loop() return request_outputs def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None: if logger_name in self.stat_loggers: raise KeyError(f"Logger with name {logger_name} already exists.") self.stat_loggers[logger_name] = logger def remove_logger(self, logger_name: str) -> None: if logger_name not in self.stat_loggers: raise KeyError(f"Logger with name {logger_name} does not exist.") del self.stat_loggers[logger_name] def do_log_stats( self, scheduler_outputs: Optional[SchedulerOutputs] = None, model_output: Optional[List[SamplerOutput]] = None) -> None: """Forced log when no requests active.""" if self.log_stats: stats = self._get_stats(scheduler_outputs, model_output) for loggers in self.stat_loggers.values(): loggers.log(stats) def _get_stats( self, scheduler_outputs: Optional[SchedulerOutputs], model_output: Optional[List[SamplerOutput]] = None) -> Stats: """Get Stats to be Logged to Prometheus. Args: scheduler_outputs: Optional, used to populate metrics related to the scheduled batch, model_output: Optional, used to emit speculative decoding metrics which are created by the workers. """ now = time.time() # System State # Scheduler State num_running_sys = sum( len(scheduler.running) for scheduler in self.scheduler) num_swapped_sys = sum( len(scheduler.swapped) for scheduler in self.scheduler) num_waiting_sys = sum( len(scheduler.waiting) for scheduler in self.scheduler) # KV Cache Usage in % num_total_gpu = self.cache_config.num_gpu_blocks gpu_cache_usage_sys = 0. if num_total_gpu is not None: num_free_gpu = sum( scheduler.block_manager.get_num_free_gpu_blocks() for scheduler in self.scheduler) gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu) num_total_cpu = self.cache_config.num_cpu_blocks cpu_cache_usage_sys = 0. if num_total_cpu is not None and num_total_cpu > 0: num_free_cpu = sum( scheduler.block_manager.get_num_free_cpu_blocks() for scheduler in self.scheduler) cpu_cache_usage_sys = 1.0 - (num_free_cpu / num_total_cpu) # Iteration stats num_prompt_tokens_iter = 0 num_generation_tokens_iter = 0 time_to_first_tokens_iter: List[float] = [] time_per_output_tokens_iter: List[float] = [] num_preemption_iter = (0 if scheduler_outputs is None else scheduler_outputs.preempted) # Request stats # Latency time_e2e_requests: List[float] = [] # Metadata num_prompt_tokens_requests: List[int] = [] num_generation_tokens_requests: List[int] = [] best_of_requests: List[int] = [] n_requests: List[int] = [] finished_reason_requests: List[str] = [] # NOTE: This loop assumes prefill seq_groups are before # decode seq_groups in scheduled_seq_groups. if scheduler_outputs is not None: num_generation_tokens_from_prefill_groups = 0. # NOTE: if scheduler_outputs.num_prefill_groups > 0 and # the len of scheduler_outputs.scheduled_seq_groups is != # scheduler_outputs.num_prefill_groups, this means that # chunked prefills have been detected. for idx, scheduled_seq_group in enumerate( scheduler_outputs.scheduled_seq_groups): group_was_prefill = idx < scheduler_outputs.num_prefill_groups seq_group = scheduled_seq_group.seq_group # NOTE: a seq_group that completed all of its prefill tokens # in the last iteration will have seq_group.is_prefill() = False # with group_was_prefill = True if group_was_prefill: # Number of prompt tokens. num_prompt_tokens_iter += ( scheduled_seq_group.token_chunk_size) # If the seq_group just finished the prefill state # get TTFT. if not seq_group.is_prefill(): latency = seq_group.get_last_latency(now) time_to_first_tokens_iter.append(latency) # One generation token per finished prefill. num_generation_tokens_from_prefill_groups += ( seq_group.num_seqs()) else: # TPOTs. latency = seq_group.get_last_latency(now) time_per_output_tokens_iter.append(latency) # Because of chunked prefill, we can have a single sequence # group that does multiple prompt_runs. To prevent logging # the same metadata more than once per request, we standardize # on logging request level information for finished requests, # which can only happen once. if seq_group.is_finished(): # Latency timings time_e2e_requests.append(now - seq_group.metrics.arrival_time) # Metadata num_prompt_tokens_requests.append( len(seq_group.prompt_token_ids)) num_generation_tokens_requests.extend([ seq.get_output_len() for seq in seq_group.get_finished_seqs() ]) if seq_group.sampling_params is not None: best_of_requests.append( seq_group.sampling_params.best_of) n_requests.append(seq_group.sampling_params.n) finished_reason_requests.extend([ SequenceStatus.get_finished_reason(seq.status) for seq in seq_group.get_finished_seqs() ]) # Number of generation tokens. # num_batched_tokens equals the number of prompt_tokens plus the # number of decode_tokens in a single iteration. So, # num_generation_tokens = num_batched_tokens - num_prompt_tokens # + num_generation_tokens_from_prefill_groups (since we generate # one token on prefills on iters where the prefill finishes). num_generation_tokens_iter = ( scheduler_outputs.num_batched_tokens - num_prompt_tokens_iter + num_generation_tokens_from_prefill_groups) # Spec decode, if enabled, emits specialized metrics from the worker in # sampler output. if model_output and (model_output[0].spec_decode_worker_metrics is not None): spec_decode_metrics = model_output[0].spec_decode_worker_metrics else: spec_decode_metrics = None return Stats( now=now, # System stats # Scheduler State num_running_sys=num_running_sys, num_swapped_sys=num_swapped_sys, num_waiting_sys=num_waiting_sys, # KV Cache Usage in % gpu_cache_usage_sys=gpu_cache_usage_sys, cpu_cache_usage_sys=cpu_cache_usage_sys, # Iteration stats num_prompt_tokens_iter=num_prompt_tokens_iter, num_generation_tokens_iter=num_generation_tokens_iter, time_to_first_tokens_iter=time_to_first_tokens_iter, time_per_output_tokens_iter=time_per_output_tokens_iter, spec_decode_metrics=spec_decode_metrics, num_preemption_iter=num_preemption_iter, # Request stats # Latency time_e2e_requests=time_e2e_requests, # Metadata num_prompt_tokens_requests=num_prompt_tokens_requests, num_generation_tokens_requests=num_generation_tokens_requests, best_of_requests=best_of_requests, n_requests=n_requests, finished_reason_requests=finished_reason_requests, ) def add_lora(self, lora_request: LoRARequest) -> bool: return self.model_executor.add_lora(lora_request) def remove_lora(self, lora_id: int) -> bool: return self.model_executor.remove_lora(lora_id) def list_loras(self) -> List[int]: return self.model_executor.list_loras() def pin_lora(self, lora_id: int) -> bool: return self.model_executor.pin_lora(lora_id) def add_prompt_adapter( self, prompt_adapter_request: PromptAdapterRequest) -> bool: return self.model_executor.add_prompt_adapter(prompt_adapter_request) def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool: return self.model_executor.remove_prompt_adapter(prompt_adapter_id) def list_prompt_adapters(self) -> List[int]: return self.model_executor.list_prompt_adapters() def check_health(self) -> None: if self.tokenizer: self.tokenizer.check_health() self.model_executor.check_health() setup_logger()