"""Attention layer.""" from typing import Any, Dict, List, Optional import torch import torch.nn as nn from aphrodite.attention.backends.abstract import (AttentionMetadata, AttentionType) from aphrodite.attention.selector import get_attn_backend from aphrodite.common.config import CacheConfig from aphrodite.quantization.base_config import QuantizationConfig from aphrodite.quantization.kv_cache import BaseKVCacheMethod class Attention(nn.Module): """Attention layer. This class takes query, key, and value tensors as input. The input tensors can either contain prompt tokens or generation tokens. The class does the following: 1. Store the input key and value tensors in the KV cache. 2. Perform (multi-head/multi-query/grouped-query) attention. 3. Return the output tensor. """ def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: Optional[int] = None, alibi_slopes: Optional[List[float]] = None, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, blocksparse_params: Optional[Dict[str, Any]] = None, logits_soft_cap: Optional[float] = None, prefix: str = "", ) -> None: super().__init__() if cache_config is not None: kv_cache_dtype = cache_config.cache_dtype block_size = cache_config.block_size sliding_window = cache_config.sliding_window else: kv_cache_dtype = "auto" block_size = 16 sliding_window = None if num_kv_heads is None: num_kv_heads = num_heads # The default k/v_scale is set to 1.0. This is ignored # when kv-cache is not fp8, and should be used with # kv-cache in fp8_e5m2. For kv-cache in fp8_e4m3, we # expect the pre-quantized k/v_scale to be loaded along # with the model weights. self.kv_cache_dtype = kv_cache_dtype self._k_scale = 1.0 self._v_scale = 1.0 quant_method = quant_config.get_quant_method( self, prefix=prefix) if quant_config else None if quant_method is not None: assert isinstance(quant_method, BaseKVCacheMethod) # TODO: kv cache dtype should be specified in the FP8 # checkpoint config and become the "auto" behavior if self.kv_cache_dtype == "fp8_e5m2": raise ValueError("fp8_e5m2 kv-cache is not supported with " "fp8 checkpoints.") # If quantization is enabled, we make "k_scale" and "v_scale" # parameters so that it can be loaded from the model checkpoint. # The k/v_scale will then be converted back to native float32 # values after weight loading. self.quant_method = quant_method self.quant_method.create_weights(self) # During model initialization, the default dtype is set as the model # weight and activation dtype. dtype = torch.get_default_dtype() attn_backend = get_attn_backend(num_heads, head_size, num_kv_heads, sliding_window, dtype, kv_cache_dtype, block_size, blocksparse_params is not None) impl_cls = attn_backend.get_impl_cls() self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads, alibi_slopes, sliding_window, kv_cache_dtype, blocksparse_params, logits_soft_cap) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: Optional[torch.Tensor], attn_metadata: AttentionMetadata, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: return self.impl.forward(query, key, value, kv_cache, attn_metadata, self._k_scale, self._v_scale, attn_type=attn_type) def extra_repr(self) -> str: s = f"head_size={self.impl.head_size}" # type: ignore s += f", num_heads={self.impl.num_heads}" # type: ignore s += f", num_kv_heads={self.impl.num_kv_heads}" # type: ignore s += f", scale={self.impl.scale}" # type: ignore s += f", backend={self.impl.__class__.__name__}" return s