# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
# Copyright 2023 The vLLM team.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple

import torch
from torch import nn
from transformers import GPT2Config

from aphrodite.attention import Attention, AttentionMetadata
from aphrodite.common.config import CacheConfig
from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
from aphrodite.distributed import get_tensor_model_parallel_world_size
from aphrodite.modeling.layers.activation import get_act_fn
from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
                                              QKVParallelLinear,
                                              RowParallelLinear)
from aphrodite.modeling.layers.logits_processor import LogitsProcessor
from aphrodite.modeling.layers.sampler import Sampler
from aphrodite.modeling.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding)
from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
from aphrodite.modeling.sampling_metadata import SamplingMetadata
from aphrodite.quantization.base_config import QuantizationConfig


class GPT2Attention(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.hidden_size = config.hidden_size
        total_num_heads = config.num_attention_heads
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
        assert total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = self.hidden_size // total_num_heads
        self.scale = self.head_dim**-0.5

        self.c_attn = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            total_num_heads,
            bias=True,
            quant_config=quant_config,
        )
        self.c_proj = RowParallelLinear(
            self.hidden_size,
            self.hidden_size,
            bias=True,
            quant_config=quant_config,
        )
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              scale=self.scale,
                              cache_config=cache_config,
                              quant_config=quant_config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
        attn_output, _ = self.c_proj(attn_output)
        return attn_output


class GPT2MLP(nn.Module):

    def __init__(
        self,
        intermediate_size: int,
        config: GPT2Config,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        self.c_fc = ColumnParallelLinear(
            hidden_size,
            intermediate_size,
            bias=True,
            quant_config=quant_config,
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=True,
            quant_config=quant_config,
        )
        self.act = get_act_fn(config.activation_function, quant_config,
                              intermediate_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states


class GPT2Block(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = (config.n_inner if config.n_inner is not None else 4 *
                     hidden_size)

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPT2Attention(config, cache_config, quant_config)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = GPT2MLP(inner_dim, config, quant_config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            attn_metadata=attn_metadata,
        )
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        return hidden_states


class GPT2Model(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.config = config
        assert not config.add_cross_attention
        assert not config.scale_attn_by_inverse_layer_idx
        assert not config.reorder_and_upcast_attn
        self.embed_dim = config.hidden_size
        self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
        self.h = nn.ModuleList([
            GPT2Block(config, cache_config, quant_config)
            for _ in range(config.num_hidden_layers)
        ])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
    ) -> torch.Tensor:
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        for i in range(len(self.h)):
            layer = self.h[i]
            hidden_states = layer(hidden_states, kv_caches[i], attn_metadata)

        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPT2LMHeadModel(nn.Module):

    def __init__(
        self,
        config: GPT2Config,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.config = config
        self.quant_config = quant_config
        self.transformer = GPT2Model(config, cache_config, quant_config)
        self.lm_head = self.transformer.wte
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.sampler = Sampler()

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
    ) -> torch.Tensor:
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         attn_metadata)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def sample(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(logits, sampling_metadata)
        return next_tokens

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        for name, loaded_weight in weights:
            if "lm_head.weight" in name:
                # GPT-2 ties the weights of the embedding layer and the final
                # linear layer.
                continue
            if ".attn.bias" in name or ".attn.masked_bias" in name:
                # Skip attention mask.
                # NOTE: "c_attn.bias" should not be skipped.
                continue
            if not name.startswith("transformer."):
                name = "transformer." + name
            param = params_dict[name]
            # The HF's GPT-2 implementation uses Conv1D instead of Linear.
            # Because of this, we need to transpose the weights.
            # Note(zhuohan): the logic below might break quantized models.
            for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
                if conv1d_weight_name not in name:
                    continue
                if not name.endswith(".weight"):
                    continue
                loaded_weight = loaded_weight.t()
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)