import io import logging import os import re import subprocess import sys from shutil import which from typing import List import torch from packaging.version import Version, parse from setuptools import Extension, find_packages, setup from setuptools.command.build_ext import build_ext from torch.utils.cpp_extension import CUDA_HOME ROOT_DIR = os.path.dirname(__file__) logger = logging.getLogger(__name__) # Target device of Aphrodite, supporting [cuda (by default), rocm, neuron, cpu] APHRODITE_TARGET_DEVICE = os.getenv("APHRODITE_TARGET_DEVICE", "cuda") # Aphrodite only supports Linux platform assert sys.platform.startswith( "linux"), "Aphrodite only supports Linux platform (including WSL)." MAIN_CUDA_VERSION = "12.1" def is_sccache_available() -> bool: return which("sccache") is not None def is_ccache_available() -> bool: return which("ccache") is not None def is_ninja_available() -> bool: return which("ninja") is not None def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text class CMakeExtension(Extension): def __init__(self, name: str, cmake_lists_dir: str = '.', **kwa) -> None: super().__init__(name, sources=[], **kwa) self.cmake_lists_dir = os.path.abspath(cmake_lists_dir) class cmake_build_ext(build_ext): # A dict of extension directories that have been configured. did_config = {} # # Determine number of compilation jobs and optionally nvcc compile threads. # def compute_num_jobs(self): # `num_jobs` is either the value of the MAX_JOBS environment variable # (if defined) or the number of CPUs available. num_jobs = os.environ.get("MAX_JOBS", None) if num_jobs is not None: num_jobs = int(num_jobs) logger.info(f"Using MAX_JOBS={num_jobs} as the number of jobs.") else: try: # os.sched_getaffinity() isn't universally available, so fall # back to os.cpu_count() if we get an error here. num_jobs = len(os.sched_getaffinity(0)) except AttributeError: num_jobs = os.cpu_count() nvcc_threads = None if _is_cuda() and get_nvcc_cuda_version() >= Version("11.2"): # `nvcc_threads` is either the value of the NVCC_THREADS # environment variable (if defined) or 1. # when it is set, we reduce `num_jobs` to avoid # overloading the system. nvcc_threads = os.getenv("NVCC_THREADS", None) if nvcc_threads is not None: nvcc_threads = int(nvcc_threads) logger.info(f"Using NVCC_THREADS={nvcc_threads} as the number" " of nvcc threads.") else: nvcc_threads = 1 num_jobs = max(1, num_jobs // nvcc_threads) return num_jobs, nvcc_threads # # Perform cmake configuration for a single extension. # def configure(self, ext: CMakeExtension) -> None: # If we've already configured using the CMakeLists.txt for # this extension, exit early. if ext.cmake_lists_dir in cmake_build_ext.did_config: return cmake_build_ext.did_config[ext.cmake_lists_dir] = True # Select the build type. # Note: optimization level + debug info are set by the build type default_cfg = "Debug" if self.debug else "RelWithDebInfo" cfg = os.getenv("CMAKE_BUILD_TYPE", default_cfg) # where .so files will be written, should be the same for all extensions # that use the same CMakeLists.txt. outdir = os.path.abspath( os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = [ '-DCMAKE_BUILD_TYPE={}'.format(cfg), '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={}'.format(outdir), '-DCMAKE_ARCHIVE_OUTPUT_DIRECTORY={}'.format(self.build_temp), '-DAPHRODITE_TARGET_DEVICE={}'.format(APHRODITE_TARGET_DEVICE), ] verbose = bool(int(os.getenv('VERBOSE', '0'))) if verbose: cmake_args += ['-DCMAKE_VERBOSE_MAKEFILE=ON'] if is_sccache_available(): cmake_args += [ '-DCMAKE_CXX_COMPILER_LAUNCHER=sccache', '-DCMAKE_CUDA_COMPILER_LAUNCHER=sccache', ] elif is_ccache_available(): cmake_args += [ '-DCMAKE_CXX_COMPILER_LAUNCHER=ccache', '-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache', ] # Pass the python executable to cmake so it can find an exact # match. cmake_args += [ '-DAPHRODITE_PYTHON_EXECUTABLE={}'.format(sys.executable) ] if _install_quants(): cmake_args += ['-DAPHRODITE_INSTALL_QUANT_KERNELS=ON'] if _install_punica(): cmake_args += ['-DAPHRODITE_INSTALL_PUNICA_KERNELS=ON'] if _install_hadamard(): cmake_args += ['-DAPHRODITE_INSTALL_HADAMARD_KERNELS=ON'] # # Setup parallelism and build tool # num_jobs, nvcc_threads = self.compute_num_jobs() if nvcc_threads: cmake_args += ['-DNVCC_THREADS={}'.format(nvcc_threads)] if is_ninja_available(): build_tool = ['-G', 'Ninja'] cmake_args += [ '-DCMAKE_JOB_POOL_COMPILE:STRING=compile', '-DCMAKE_JOB_POOLS:STRING=compile={}'.format(num_jobs), ] else: # Default build tool to whatever cmake picks. build_tool = [] subprocess.check_call( ['cmake', ext.cmake_lists_dir, *build_tool, *cmake_args], cwd=self.build_temp) def build_extensions(self) -> None: # Ensure that CMake is present and working try: subprocess.check_output(['cmake', '--version']) except OSError as e: raise RuntimeError('Cannot find CMake executable') from e # Create build directory if it does not exist. if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) # Build all the extensions for ext in self.extensions: self.configure(ext) ext_target_name = remove_prefix(ext.name, "aphrodite.") num_jobs, _ = self.compute_num_jobs() build_args = [ '--build', '.', '--target', ext_target_name, '-j', str(num_jobs) ] subprocess.check_call(['cmake', *build_args], cwd=self.build_temp) def _is_cuda() -> bool: return APHRODITE_TARGET_DEVICE == "cuda" \ and torch.version.cuda is not None \ and not _is_neuron() def _is_hip() -> bool: return (APHRODITE_TARGET_DEVICE == "cuda" or APHRODITE_TARGET_DEVICE == "rocm") \ and torch.version.hip is not None def _is_neuron() -> bool: torch_neuronx_installed = True try: subprocess.run(["neuron-ls"], capture_output=True, check=True) except (FileNotFoundError, PermissionError, subprocess.CalledProcessError): torch_neuronx_installed = False return torch_neuronx_installed def _is_cpu() -> bool: return APHRODITE_TARGET_DEVICE == "cpu" def _install_quants() -> bool: install_quants = bool( int(os.getenv("APHRODITE_INSTALL_QUANT_KERNELS", "1"))) device_count = torch.cuda.device_count() for i in range(device_count): major, minor = torch.cuda.get_device_capability(i) if major < 6: install_quants = False break return install_quants def _install_punica() -> bool: install_punica = bool( int(os.getenv("APHRODITE_INSTALL_PUNICA_KERNELS", "1"))) device_count = torch.cuda.device_count() for i in range(device_count): major, minor = torch.cuda.get_device_capability(i) if major < 8: install_punica = False break return install_punica def _install_hadamard() -> bool: install_hadamard = bool( int(os.getenv("APHRODITE_INSTALL_HADAMARD_KERNELS", "1"))) device_count = torch.cuda.device_count() for i in range(device_count): major, minor = torch.cuda.get_device_capability(i) if major <= 6: install_hadamard = False break return install_hadamard def get_hipcc_rocm_version(): # Run the hipcc --version command result = subprocess.run(['hipcc', '--version'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) # Check if the command was executed successfully if result.returncode != 0: print("Error running 'hipcc --version'") return None # Extract the version using a regular expression match = re.search(r'HIP version: (\S+)', result.stdout) if match: # Return the version string return match.group(1) else: print("Could not find HIP version in the output") return None def get_neuronxcc_version(): import sysconfig site_dir = sysconfig.get_paths()["purelib"] version_file = os.path.join(site_dir, "neuronxcc", "version", "__init__.py") # Check if the command was executed successfully with open(version_file, "rt") as fp: content = fp.read() # Extract the version using a regular expression match = re.search(r"__version__ = '(\S+)'", content) if match: # Return the version string return match.group(1) else: raise RuntimeError("Could not find HIP version in the output") def get_nvcc_cuda_version() -> Version: """Get the CUDA version from nvcc. Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py """ nvcc_output = subprocess.check_output([CUDA_HOME + "/bin/nvcc", "-V"], universal_newlines=True) output = nvcc_output.split() release_idx = output.index("release") + 1 nvcc_cuda_version = parse(output[release_idx].split(",")[0]) return nvcc_cuda_version def get_path(*filepath) -> str: return os.path.join(ROOT_DIR, *filepath) def find_version(filepath: str) -> str: """Extract version information from the given filepath. Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py """ with open(filepath) as fp: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", fp.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") def get_aphrodite_version() -> str: version = find_version(get_path("aphrodite", "__init__.py")) if _is_cuda(): cuda_version = str(get_nvcc_cuda_version()) if cuda_version != MAIN_CUDA_VERSION: cuda_version_str = cuda_version.replace(".", "")[:3] version += f"+cu{cuda_version_str}" elif _is_hip(): # Get the HIP version hipcc_version = get_hipcc_rocm_version() if hipcc_version != MAIN_CUDA_VERSION: rocm_version_str = hipcc_version.replace(".", "")[:3] version += f"+rocm{rocm_version_str}" elif _is_neuron(): # Get the Neuron version neuron_version = str(get_neuronxcc_version()) if neuron_version != MAIN_CUDA_VERSION: neuron_version_str = neuron_version.replace(".", "")[:3] version += f"+neuron{neuron_version_str}" elif _is_cpu(): version += "+cpu" else: raise RuntimeError("Unknown runtime environment, " "must be either CUDA, ROCm, CPU, or Neuron.") return version def read_readme() -> str: """Read the README file if present.""" p = get_path("README.md") if os.path.isfile(p): return io.open(get_path("README.md"), "r", encoding="utf-8").read() else: return "" def get_requirements() -> List[str]: """Get Python package dependencies from requirements.txt.""" def _read_requirements(filename: str) -> List[str]: with open(get_path(filename)) as f: requirements = f.read().strip().split("\n") resolved_requirements = [] for line in requirements: if line.startswith("-r "): resolved_requirements += _read_requirements(line.split()[1]) else: resolved_requirements.append(line) return resolved_requirements if _is_cuda(): requirements = _read_requirements("requirements-cuda.txt") cuda_major, cuda_minor = torch.version.cuda.split(".") modified_requirements = [] for req in requirements: if "vllm-nccl-cu12" in req: req = req.replace("vllm-nccl-cu12", f"vllm-nccl-cu{cuda_major}") elif ("vllm-flash-attn" in req and not (cuda_major == "12" and cuda_minor == "1")): # vllm-flash-attn is built only for CUDA 12.1. # Skip for other versions. continue modified_requirements.append(req) elif _is_hip(): requirements = _read_requirements("requirements-rocm.txt") elif _is_neuron(): requirements = _read_requirements("requirements-neuron.txt") elif _is_cpu(): requirements = _read_requirements("requirements-cpu.txt") else: raise ValueError( "Unsupported platform, please use CUDA, ROCm, Neuron, or CPU.") return requirements ext_modules = [] if _is_cuda(): ext_modules.append(CMakeExtension(name="aphrodite._moe_C")) if _install_hadamard(): ext_modules.append(CMakeExtension(name="aphrodite._hadamard_C")) if not _is_neuron(): ext_modules.append(CMakeExtension(name="aphrodite._C")) if _install_quants() and _is_cuda() or _is_hip(): ext_modules.append(CMakeExtension(name="aphrodite._quant_C")) if _install_punica() and _is_cuda() or _is_hip(): ext_modules.append(CMakeExtension(name="aphrodite._punica_C")) package_data = { "aphrodite": [ "endpoints/kobold/klite.embd", "quantization/hadamard.safetensors", "py.typed", "modeling/layers/fused_moe/configs/*.json" ] } if os.environ.get("APHRODITE_USE_PRECOMPILED"): ext_modules = [] package_data["aphrodite"].append("*.so") setup( name="aphrodite-engine", version=get_aphrodite_version(), author="PygmalionAI", license="AGPL 3.0", description="The inference engine for PygmalionAI models", long_description=read_readme(), long_description_content_type="text/markdown", url="https://github.com/PygmalionAI/aphrodite-engine", project_urls={ "Homepage": "https://pygmalion.chat", "Documentation": "https://docs.pygmalion.chat", "GitHub": "https://github.com/PygmalionAI", "Huggingface": "https://huggingface.co/PygmalionAI", }, classifiers=[ "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)", # noqa: E501 "Topic :: Scientific/Engineering :: Artificial Intelligence", ], packages=find_packages(exclude=("kernels", "examples", "tests*")), python_requires=">=3.8", install_requires=get_requirements(), extras_require={ "flash-attn": ["flash-attn==2.5.8"], "tensorizer": ["tensorizer>=2.9.0"], "ray": ["ray>=2.9"], }, ext_modules=ext_modules, cmdclass={"build_ext": cmake_build_ext} if not _is_neuron() else {}, package_data=package_data, entry_points={ "console_scripts": [ "aphrodite=aphrodite.endpoints.cli:main", ], }, )