# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py # Copyright 2023 The vLLM team. # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-J model compatible with HuggingFace weights.""" from typing import Iterable, List, Optional, Tuple import torch from torch import nn from transformers import GPTJConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class GPTJAttention(nn.Module): def __init__( self, config: GPTJConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.total_num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.total_num_heads self.qkv_proj = QKVParallelLinear( config.hidden_size, self.head_size, self.total_num_heads, bias=False, quant_config=quant_config, ) self.out_proj = RowParallelLinear( config.hidden_size, config.hidden_size, bias=False, quant_config=quant_config, ) tp_world_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_world_size == 0 self.num_heads = self.total_num_heads // tp_world_size scaling = self.head_size**-0.5 assert getattr(config, "rotary", True) assert config.rotary_dim % 2 == 0 rope_theta = getattr(config, "rope_theta", 10000) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.rotary_emb = get_rope( self.head_size, rotary_dim=config.rotary_dim, max_position=max_position_embeddings, base=rope_theta, is_neox_style=False, ) self.attn = Attention(self.num_heads, self.head_size, scaling, cache_config=cache_config, quant_config=quant_config) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) attn_output, _ = self.out_proj(attn_output) return attn_output class GPTJMLP(nn.Module): def __init__( self, intermediate_size: int, config: GPTJConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() hidden_size = config.n_embd self.fc_in = ColumnParallelLinear( hidden_size, intermediate_size, quant_config=quant_config, ) self.fc_out = RowParallelLinear( intermediate_size, hidden_size, quant_config=quant_config, ) self.act = get_act_fn(config.activation_function, quant_config, intermediate_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.fc_out(hidden_states) return hidden_states class GPTJBlock(nn.Module): def __init__( self, config: GPTJConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() inner_dim = (4 * config.n_embd if config.n_inner is None else config.n_inner) self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.attn = GPTJAttention(config, cache_config, quant_config) self.mlp = GPTJMLP(inner_dim, config, quant_config) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn( position_ids=position_ids, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) mlp_output = self.mlp(hidden_states) hidden_states = attn_output + mlp_output + residual return hidden_states class GPTJModel(nn.Module): def __init__( self, config: GPTJConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.embed_dim = config.n_embd self.wte = VocabParallelEmbedding( config.vocab_size, self.embed_dim, ) self.h = nn.ModuleList([ GPTJBlock(config, cache_config, quant_config) for _ in range(config.n_layer) ]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.wte(input_ids) for i in range(len(self.h)): layer = self.h[i] hidden_states = layer( position_ids, hidden_states, kv_caches[i], attn_metadata, ) hidden_states = self.ln_f(hidden_states) return hidden_states class GPTJForCausalLM(nn.Module): def __init__( self, config: GPTJConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.quant_config = quant_config assert not config.tie_word_embeddings self.transformer = GPTJModel(config, cache_config, quant_config) self.lm_head = ParallelLMHead( config.vocab_size, config.n_embd, bias=True, quant_config=quant_config, ) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata, self.lm_head.bias) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "attn.bias" in name or "attn.masked_bias" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)