# Adapted from # https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py import time from typing import Dict, List, Literal, Optional, Union from pydantic import (AliasChoices, BaseModel, Field, conint, model_validator, root_validator) from aphrodite.common.sampling_params import SamplingParams from aphrodite.common.utils import random_uuid from aphrodite.common.logits_processor import BiasLogitsProcessor class ErrorResponse(BaseModel): object: str = "error" message: str type: str param: Optional[str] = None code: int class ModelPermission(BaseModel): id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}") object: str = "model_permission" created: int = Field(default_factory=lambda: int(time.time())) allow_create_engine: bool = False allow_sampling: bool = True allow_logprobs: bool = True allow_search_indices: bool = False allow_view: bool = True allow_fine_tuning: bool = False organization: str = "*" group: Optional[str] = None is_blocking: bool = False class ModelCard(BaseModel): id: str object: str = "model" created: int = Field(default_factory=lambda: int(time.time())) owned_by: str = "pygmalionai" root: Optional[str] = None parent: Optional[str] = None permission: List[ModelPermission] = Field(default_factory=list) class ModelList(BaseModel): object: str = "list" data: List[ModelCard] = Field(default_factory=list) class UsageInfo(BaseModel): prompt_tokens: int = 0 total_tokens: int = 0 completion_tokens: Optional[int] = 0 class ResponseFormat(BaseModel): # type must be "json_object" or "text" type: str = Literal["text", "json_object"] class ChatCompletionRequest(BaseModel): model: str # support list type in messages.content messages: List[Dict[str, Union[str, List[Dict[str, str]]]]] temperature: Optional[float] = 0.7 top_p: Optional[float] = 1.0 tfs: Optional[float] = 1.0 eta_cutoff: Optional[float] = 0.0 epsilon_cutoff: Optional[float] = 0.0 typical_p: Optional[float] = 1.0 n: Optional[int] = 1 max_tokens: Optional[int] = None min_tokens: Optional[int] = 0 seed: Optional[int] = None stop: Optional[Union[str, List[str]]] = Field(default_factory=list) include_stop_str_in_output: Optional[bool] = False stream: Optional[bool] = False logprobs: Optional[bool] = False top_logprobs: Optional[int] = None presence_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0 repetition_penalty: Optional[float] = 1.0 logit_bias: Optional[Dict[str, float]] = None user: Optional[str] = None best_of: Optional[int] = None top_k: Optional[int] = -1 top_a: Optional[float] = 0.0 min_p: Optional[float] = 0.0 mirostat_mode: Optional[int] = 0 mirostat_tau: Optional[float] = 0.0 mirostat_eta: Optional[float] = 0.0 dynatemp_min: Optional[float] = 0.0 dynatemp_max: Optional[float] = 0.0 dynatemp_exponent: Optional[float] = 1.0 smoothing_factor: Optional[float] = 0.0 smoothing_curve: Optional[float] = 1.0 ignore_eos: Optional[bool] = False use_beam_search: Optional[bool] = False prompt_logprobs: Optional[int] = None stop_token_ids: Optional[List[int]] = Field(default_factory=list) custom_token_bans: Optional[List[int]] = Field(default_factory=list) skip_special_tokens: Optional[bool] = True spaces_between_special_tokens: Optional[bool] = True add_generation_prompt: Optional[bool] = True echo: Optional[bool] = False length_penalty: Optional[float] = 1.0 guided_json: Optional[Union[str, dict, BaseModel]] = None guided_regex: Optional[str] = None guided_choice: Optional[List[str]] = None guided_grammar: Optional[str] = None response_format: Optional[ResponseFormat] = None guided_decoding_backend: Optional[str] = Field( default="outlines", description=( "If specified, will override the default guided decoding backend " "of the server for this specific request. If set, must be either " "'outlines' / 'lm-format-enforcer'")) def to_sampling_params(self, vocab_size: int) -> SamplingParams: if self.logprobs and not self.top_logprobs: raise ValueError("Top logprobs must be set when logprobs is.") if self.top_k == 0: self.top_k = -1 logits_processors = [] if self.logit_bias: biases = { int(tok): max(-100, min(float(bias), 100)) for tok, bias in self.logit_bias.items() if 0 < int(tok) < vocab_size } logits_processors.append(BiasLogitsProcessor(biases)) return SamplingParams( n=self.n, max_tokens=self.max_tokens, min_tokens=self.min_tokens, logprobs=self.top_logprobs if self.logprobs else None, prompt_logprobs=self.top_logprobs if self.echo else None, temperature=self.temperature, top_p=self.top_p, tfs=self.tfs, eta_cutoff=self.eta_cutoff, epsilon_cutoff=self.epsilon_cutoff, typical_p=self.typical_p, presence_penalty=self.presence_penalty, frequency_penalty=self.frequency_penalty, repetition_penalty=self.repetition_penalty, top_k=self.top_k, top_a=self.top_a, min_p=self.min_p, mirostat_mode=self.mirostat_mode, mirostat_tau=self.mirostat_tau, mirostat_eta=self.mirostat_eta, dynatemp_min=self.dynatemp_min, dynatemp_max=self.dynatemp_max, dynatemp_exponent=self.dynatemp_exponent, smoothing_factor=self.smoothing_factor, smoothing_curve=self.smoothing_curve, ignore_eos=self.ignore_eos, use_beam_search=self.use_beam_search, stop_token_ids=self.stop_token_ids, custom_token_bans=self.custom_token_bans, skip_special_tokens=self.skip_special_tokens, spaces_between_special_tokens=self.spaces_between_special_tokens, stop=self.stop, best_of=self.best_of, include_stop_str_in_output=self.include_stop_str_in_output, seed=self.seed, logits_processors=logits_processors, ) @model_validator(mode="before") @classmethod def check_guided_decoding_count(cls, data): guide_count = sum([ "guided_json" in data and data["guided_json"] is not None, "guided_regex" in data and data["guided_regex"] is not None, "guided_choice" in data and data["guided_choice"] is not None ]) if guide_count > 1: raise ValueError( "You can only use one kind of guided decoding " "('guided_json', 'guided_regex' or 'guided_choice').") return data class CompletionRequest(BaseModel): model: str # a string, array of strings, array of tokens, or array of token arrays prompt: Union[List[int], List[List[int]], str, List[str]] suffix: Optional[str] = None max_tokens: Optional[int] = 16 min_tokens: Optional[int] = 0 temperature: Optional[float] = 1.0 top_p: Optional[float] = 1.0 tfs: Optional[float] = 1.0 eta_cutoff: Optional[float] = 0.0 epsilon_cutoff: Optional[float] = 0.0 typical_p: Optional[float] = 1.0 n: Optional[int] = 1 stream: Optional[bool] = False logprobs: Optional[int] = None echo: Optional[bool] = False stop: Optional[Union[str, List[str]]] = Field(default_factory=list) seed: Optional[int] = None include_stop_str_in_output: Optional[bool] = False presence_penalty: Optional[float] = 0.0 frequency_penalty: Optional[float] = 0.0 repetition_penalty: Optional[float] = 1.0 best_of: Optional[int] = None logit_bias: Optional[Dict[str, float]] = None user: Optional[str] = None top_k: Optional[int] = -1 top_a: Optional[float] = 0.0 min_p: Optional[float] = 0.0 mirostat_mode: Optional[int] = 0 mirostat_tau: Optional[float] = 0.0 mirostat_eta: Optional[float] = 0.0 dynatemp_min: Optional[float] = Field(0.0, validation_alias=AliasChoices( "dynatemp_min", "dynatemp_low"), description="Aliases: dynatemp_low") dynatemp_max: Optional[float] = Field(0.0, validation_alias=AliasChoices( "dynatemp_max", "dynatemp_high"), description="Aliases: dynatemp_high") dynatemp_exponent: Optional[float] = 1.0 smoothing_factor: Optional[float] = 0.0 smoothing_curve: Optional[float] = 1.0 ignore_eos: Optional[bool] = False use_beam_search: Optional[bool] = False logprobs: Optional[int] = None prompt_logprobs: Optional[int] = None stop_token_ids: Optional[List[int]] = Field(default_factory=list) custom_token_bans: Optional[List[int]] = Field(default_factory=list) skip_special_tokens: Optional[bool] = True spaces_between_special_tokens: Optional[bool] = True truncate_prompt_tokens: Optional[conint(ge=1)] = None grammar: Optional[str] = None length_penalty: Optional[float] = 1.0 guided_json: Optional[Union[str, dict, BaseModel]] = None guided_regex: Optional[str] = None guided_choice: Optional[List[str]] = None guided_grammar: Optional[str] = None response_format: Optional[ResponseFormat] = None guided_decoding_backend: Optional[str] = Field( default="outlines", description=( "If specified, will override the default guided decoding backend " "of the server for this specific request. If set, must be one of " "'outlines' / 'lm-format-enforcer'")) def to_sampling_params(self, vocab_size: int) -> SamplingParams: echo_without_generation = self.echo and self.max_tokens == 0 if self.top_k == 0: self.top_k = -1 logits_processors = [] if self.logit_bias: biases = { int(tok): max(-100, min(float(bias), 100)) for tok, bias in self.logit_bias.items() if 0 < int(tok) < vocab_size } logits_processors.append(BiasLogitsProcessor(biases)) return SamplingParams( n=self.n, max_tokens=self.max_tokens if not echo_without_generation else 1, min_tokens=self.min_tokens, temperature=self.temperature, top_p=self.top_p, tfs=self.tfs, eta_cutoff=self.eta_cutoff, epsilon_cutoff=self.epsilon_cutoff, typical_p=self.typical_p, presence_penalty=self.presence_penalty, frequency_penalty=self.frequency_penalty, repetition_penalty=self.repetition_penalty, top_k=self.top_k, top_a=self.top_a, min_p=self.min_p, mirostat_mode=self.mirostat_mode, mirostat_tau=self.mirostat_tau, mirostat_eta=self.mirostat_eta, dynatemp_min=self.dynatemp_min, dynatemp_max=self.dynatemp_max, dynatemp_exponent=self.dynatemp_exponent, smoothing_factor=self.smoothing_factor, smoothing_curve=self.smoothing_curve, ignore_eos=self.ignore_eos, use_beam_search=self.use_beam_search, logprobs=self.logprobs, prompt_logprobs=self.prompt_logprobs if self.echo else None, stop_token_ids=self.stop_token_ids, custom_token_bans=self.custom_token_bans, skip_special_tokens=self.skip_special_tokens, spaces_between_special_tokens=self.spaces_between_special_tokens, stop=self.stop, best_of=self.best_of, include_stop_str_in_output=self.include_stop_str_in_output, seed=self.seed, logits_processors=logits_processors, truncate_prompt_tokens=self.truncate_prompt_tokens, ) @model_validator(mode="before") @classmethod def check_guided_decoding_count(cls, data): guide_count = sum([ "guided_json" in data and data["guided_json"] is not None, "guided_regex" in data and data["guided_regex"] is not None, "guided_choice" in data and data["guided_choice"] is not None ]) if guide_count > 1: raise ValueError( "You can only use one kind of guided decoding " "('guided_json', 'guided_regex' or 'guided_choice').") return data class LogProbs(BaseModel): text_offset: List[int] = Field(default_factory=list) token_logprobs: List[Optional[float]] = Field(default_factory=list) tokens: List[str] = Field(default_factory=list) top_logprobs: Optional[List[Optional[Dict[str, float]]]] = None class CompletionResponseChoice(BaseModel): index: int text: str logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None stop_reason: Union[None, int, str] = Field( default=None, description=( "The stop string or token id that caused the completion " "to stop, None if the completion finished for some other reason " "including encountering the EOS token"), ) class CompletionResponse(BaseModel): id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}") object: str = "text_completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[CompletionResponseChoice] usage: UsageInfo class CompletionResponseStreamChoice(BaseModel): index: int text: str logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None stop_reason: Union[None, int, str] = Field( default=None, description=( "The stop string or token id that caused the completion " "to stop, None if the completion finished for some other reason " "including encountering the EOS token"), ) class CompletionStreamResponse(BaseModel): id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}") object: str = "text_completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[CompletionResponseStreamChoice] usage: Optional[UsageInfo] = Field(default=None) class ChatMessage(BaseModel): role: str content: str class ChatCompletionResponseChoice(BaseModel): index: int message: ChatMessage logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None stop_reason: Union[None, int, str] = None class ChatCompletionResponse(BaseModel): id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}") object: str = "chat.completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[ChatCompletionResponseChoice] usage: UsageInfo class DeltaMessage(BaseModel): role: Optional[str] = None content: Optional[str] = None class ChatCompletionResponseStreamChoice(BaseModel): index: int delta: DeltaMessage logprobs: Optional[LogProbs] = None finish_reason: Optional[Literal["stop", "length"]] = None stop_reason: Union[None, int, str] = None class ChatCompletionStreamResponse(BaseModel): id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}") object: str = "chat.completion.chunk" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[ChatCompletionResponseStreamChoice] usage: Optional[UsageInfo] = Field(default=None) logprobs: Optional[LogProbs] = None class EmbeddingsRequest(BaseModel): input: List[str] = Field( ..., description="List of input texts to generate embeddings for.") encoding_format: str = Field( "float", description="Encoding format for the embeddings. " "Can be 'float' or 'base64'.") model: Optional[str] = Field( None, description="Name of the embedding model to use. " "If not provided, the default model will be used.") class EmbeddingObject(BaseModel): object: str = Field("embedding", description="Type of the object.") embedding: List[float] = Field( ..., description="Embedding values as a list of floats.") index: int = Field( ..., description="Index of the input text corresponding to " "the embedding.") class EmbeddingsResponse(BaseModel): object: str = Field("list", description="Type of the response object.") data: List[EmbeddingObject] = Field( ..., description="List of embedding objects.") model: str = Field(..., description="Name of the embedding model used.") usage: UsageInfo = Field(..., description="Information about token usage.") class Prompt(BaseModel): prompt: str # ========== KoboldAI ========== # class KoboldSamplingParams(BaseModel): n: int = Field(1, alias="n") best_of: Optional[int] = Field(None, alias="best_of") presence_penalty: float = Field(0.0, alias="presence_penalty") frequency_penalty: float = Field(0.0, alias="rep_pen") temperature: float = Field(1.0, alias="temperature") dynatemp_range: Optional[float] = 0.0 dynatemp_exponent: Optional[float] = 1.0 smoothing_factor: Optional[float] = 0.0 smoothing_curve: Optional[float] = 1.0 top_p: float = Field(1.0, alias="top_p") top_k: float = Field(-1, alias="top_k") min_p: float = Field(0.0, alias="min_p") top_a: float = Field(0.0, alias="top_a") tfs: float = Field(1.0, alias="tfs") eta_cutoff: float = Field(0.0, alias="eta_cutoff") epsilon_cutoff: float = Field(0.0, alias="epsilon_cutoff") typical_p: float = Field(1.0, alias="typical_p") use_beam_search: bool = Field(False, alias="use_beam_search") length_penalty: float = Field(1.0, alias="length_penalty") early_stopping: Union[bool, str] = Field(False, alias="early_stopping") stop: Union[None, str, List[str]] = Field(None, alias="stop_sequence") include_stop_str_in_output: Optional[bool] = False ignore_eos: bool = Field(False, alias="ignore_eos") max_tokens: int = Field(16, alias="max_length") logprobs: Optional[int] = Field(None, alias="logprobs") custom_token_bans: Optional[List[int]] = Field(None, alias="custom_token_bans") @root_validator(pre=False, skip_on_failure=True) def validate_best_of(cls, values): # pylint: disable=no-self-argument best_of = values.get("best_of") n = values.get("n") if best_of is not None and (best_of <= 0 or best_of > n): raise ValueError( "best_of must be a positive integer less than or equal to n") return values class KAIGenerationInputSchema(BaseModel): genkey: Optional[str] = None prompt: str n: Optional[int] = 1 max_context_length: int max_length: int rep_pen: Optional[float] = 1.0 rep_pen_range: Optional[int] = None rep_pen_slope: Optional[float] = None top_k: Optional[int] = 0 top_a: Optional[float] = 0.0 top_p: Optional[float] = 1.0 min_p: Optional[float] = 0.0 tfs: Optional[float] = 1.0 eps_cutoff: Optional[float] = 0.0 eta_cutoff: Optional[float] = 0.0 typical: Optional[float] = 1.0 temperature: Optional[float] = 1.0 dynatemp_range: Optional[float] = 0.0 dynatemp_exponent: Optional[float] = 1.0 smoothing_factor: Optional[float] = 0.0 smoothing_curve: Optional[float] = 1.0 use_memory: Optional[bool] = None use_story: Optional[bool] = None use_authors_note: Optional[bool] = None use_world_info: Optional[bool] = None use_userscripts: Optional[bool] = None soft_prompt: Optional[str] = None disable_output_formatting: Optional[bool] = None frmtrmblln: Optional[bool] = None frmtrmspch: Optional[bool] = None singleline: Optional[bool] = None use_default_badwordsids: Optional[bool] = None mirostat: Optional[int] = 0 mirostat_tau: Optional[float] = 0.0 mirostat_eta: Optional[float] = 0.0 disable_input_formatting: Optional[bool] = None frmtadsnsp: Optional[bool] = None quiet: Optional[bool] = None # pylint: disable=unexpected-keyword-arg sampler_order: Optional[Union[List, str]] = Field(default_factory=list) sampler_seed: Optional[int] = None sampler_full_determinism: Optional[bool] = None stop_sequence: Optional[List[str]] = None include_stop_str_in_output: Optional[bool] = False @root_validator(pre=False, skip_on_failure=True) def check_context(cls, values): # pylint: disable=no-self-argument assert values.get("max_length") <= values.get( "max_context_length" ), "max_length must not be larger than max_context_length" return values