# coding=utf-8 """Inference-only Jamba model.""" from dataclasses import dataclass from typing import Iterable, List, Optional, Tuple import torch from torch import nn from torch.nn.parameter import Parameter from transformers import JambaConfig from aphrodite.attention.backends.abstract import AttentionMetadata from aphrodite.attention.layer import Attention from aphrodite.common.config import CacheConfig, LoRAConfig, SchedulerConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.common.utils import progress_bar # yapf: disable from aphrodite.distributed import (get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) # yapf: enable from aphrodite.modeling.layers.fused_moe import FusedMoE from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.mamba import (causal_conv1d_fn, causal_conv1d_update, selective_scan_fn, selective_state_update) from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.interfaces import HasInnerState from aphrodite.modeling.models.mamba_cache import MambaCacheManager from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import QuantizationConfig from aphrodite.task_handler.model_runner import (_BATCH_SIZES_TO_CAPTURE, _get_graph_batch_size) KVCache = Tuple[torch.Tensor, torch.Tensor] @dataclass class MambaCacheParams: is_prompt: bool = False conv_state: torch.Tensor = torch.Tensor() ssm_state: torch.Tensor = torch.Tensor() # Adapted from transformers.models.mamba.modeling_mamba.MambaMixer class JambaMambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: JambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = ColumnParallelLinear( input_size=self.conv_kernel_size, output_size=self.intermediate_size, bias=self.use_conv_bias, ) # unsqueeze to fit conv1d weights shape into the linear weights shape. # Can't do this in `weight_loader` since it already exists in # `ColumnParallelLinear` and `set_weight_attrs` # doesn't allow to override it self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1) self.in_proj = MergedColumnParallelLinear(self.hidden_size, [self.intermediate_size] * 2, bias=self.use_bias) # selective projection used to make dt, B and C input dependent self.x_proj = RowParallelLinear( self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False, ) # time step projection (discretization) - # In the forward we need to apply dt_proj without the bias, # as the bias is added in the selective scan kernel. self.dt_proj = ColumnParallelLinear(self.time_step_rank, self.intermediate_size, bias=True, skip_bias_add=True) def weight_loader(param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() tp_size = get_tensor_model_parallel_world_size() param.data.copy_( loaded_weight.data.split(loaded_weight.shape[0] // tp_size, dim=0)[tp_rank]) def A_weight_loader(param: Parameter, loaded_weight: torch.Tensor): weight_loader(param, -torch.exp(loaded_weight.float())) tp_size = get_tensor_model_parallel_world_size() self.A = nn.Parameter( torch.empty( self.intermediate_size // tp_size, self.ssm_state_size, dtype=torch.float32, )) self.D = nn.Parameter(torch.ones(self.intermediate_size // tp_size)) set_weight_attrs(self.D, {"weight_loader": weight_loader}) set_weight_attrs(self.A, {"weight_loader": A_weight_loader}) self.out_proj = RowParallelLinear( self.intermediate_size, self.hidden_size, bias=self.use_bias, input_is_parallel=True, ) self.activation = config.hidden_act self.dt_layernorm = RMSNorm(self.time_step_rank, eps=config.rms_norm_eps) self.b_layernorm = RMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) self.c_layernorm = RMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) def mamba_forward(self, hidden_states: torch.Tensor, cache_params: MambaCacheParams = None): # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states)[0].transpose(1, 2) hidden_states, gate = projected_states.chunk(2, dim=1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if cache_params is not None and not cache_params.is_prompt: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_state, conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if cache_params is not None: conv_states = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_state.copy_(conv_states) hidden_states, _ = causal_conv1d_fn( hidden_states, conv_weights, self.conv1d.bias, activation=self.activation, ) # 3. State Space Model sequence transformation # 3.a. input varying initialization of time_step, B and C ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))[0] time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1, ) time_step = self.dt_layernorm(time_step.contiguous()) B = self.b_layernorm(B.contiguous()) C = self.c_layernorm(C.contiguous()) discrete_time_step = self.dt_proj(time_step)[0].transpose(1, 2) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = (self.dt_proj.bias.float() if hasattr( self.dt_proj, "bias") else None) if cache_params is not None and not cache_params.is_prompt: scan_outputs = selective_state_update( cache_params.ssm_state, hidden_states[..., 0], discrete_time_step[..., 0], self.A, B[:, 0], C[:, 0], self.D, gate[..., 0], time_proj_bias, dt_softplus=True, ).unsqueeze(-1) else: scan_outputs, ssm_state = selective_scan_fn( hidden_states, discrete_time_step, self.A, B.transpose(1, 2), C.transpose(1, 2), self.D.float(), gate, time_proj_bias, delta_softplus=True, return_last_state=True, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_state.copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))[0] return contextualized_states def forward( self, hidden_states: torch.Tensor, attn_metadata: AttentionMetadata, conv_state: torch.Tensor, ssm_state: torch.Tensor, ): if attn_metadata.prefill_metadata is not None: offset = 0 for i, prompt_len in enumerate( attn_metadata.prefill_metadata.seq_lens): cache = MambaCacheParams(True, conv_state=conv_state[i].unsqueeze(0), ssm_state=ssm_state[i].unsqueeze(0)) hidden_states[offset:offset + prompt_len].copy_( self.mamba_forward(hidden_states[offset:offset + prompt_len].unsqueeze(0), cache_params=cache)[0]) offset += prompt_len else: cache = MambaCacheParams(False, conv_state=conv_state, ssm_state=ssm_state) hidden_states = self.mamba_forward(hidden_states.unsqueeze(1), cache_params=cache) hidden_states = hidden_states.squeeze(1) return hidden_states class JambaMoE(nn.Module): def __init__(self, config: JambaConfig, num_experts: Optional[int] = None, top_k: Optional[int] = None, params_dtype: Optional[torch.dtype] = None, tp_size: Optional[int] = None, quant_config: Optional[QuantizationConfig] = None): super().__init__() self.num_total_experts = num_experts or config.num_experts self.top_k = top_k or config.num_experts_per_tok self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size if self.num_total_experts > 1: self.router = ReplicatedLinear(self.hidden_size, self.num_total_experts, bias=False, quant_config=None, params_dtype=params_dtype) self.experts = FusedMoE(self.num_total_experts, self.top_k, self.hidden_size, self.intermediate_size, tp_size=tp_size, params_dtype=params_dtype, reduce_results=True, renormalize=False, use_grouped_topk=False, quant_config=quant_config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_shape = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (batch * sequence_length, n_experts) if self.num_total_experts > 1: router_logits, _ = self.router(hidden_states) else: router_logits = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=hidden_states.dtype) hidden_states = self.experts(hidden_states, router_logits) return hidden_states.view(orig_shape) class JambaMLP(JambaMoE): def __init__(self, config: JambaConfig, params_dtype: Optional[torch.dtype] = None, tp_size: Optional[int] = None, quant_config: Optional[QuantizationConfig] = None): super().__init__(config, num_experts=1, top_k=1, params_dtype=params_dtype, tp_size=tp_size, quant_config=quant_config) class JambaMambaDecoderLayer(nn.Module): def __init__(self, config: JambaConfig, layer_idx: int, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.layer_idx = layer_idx self.config = config self.mamba = JambaMambaMixer(config, layer_idx) num_experts = config.layers_num_experts[layer_idx] ffn_layer_class = JambaMoE if num_experts > 1 else JambaMLP self.feed_forward = ffn_layer_class(config, quant_config=quant_config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], conv_state: torch.Tensor, ssm_state: torch.Tensor, **kwargs, ): if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.mamba(hidden_states, attn_metadata, conv_state, ssm_state) # Fully Connected hidden_states, residual = self.pre_ff_layernorm( hidden_states, residual) hidden_states = self.feed_forward(hidden_states) return hidden_states, residual class JambaAttentionDecoderLayer(nn.Module): def __init__( self, config: JambaConfig, layer_idx: int, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = config.num_attention_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = config.num_key_value_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = config.hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.qkv_proj = QKVParallelLinear( config.hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim, config.hidden_size, bias=False, quant_config=quant_config) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, ) num_experts = config.layers_num_experts[layer_idx] ffn_layer_class = JambaMoE if num_experts > 1 else JambaMLP self.feed_forward = ffn_layer_class(config, quant_config=quant_config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def self_attention( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, **kwargs, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], **kwargs, ): if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attention( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.pre_ff_layernorm( hidden_states, residual) hidden_states = self.feed_forward(hidden_states) return hidden_states, residual ALL_DECODER_LAYER_TYPES = { "attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer } class JambaModel(nn.Module): def __init__( self, config: JambaConfig, quant_config: Optional[QuantizationConfig] = None, cache_config: Optional[CacheConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id lora_vocab = ((lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0) self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, ) decoder_layers = [] for i in range(config.num_hidden_layers): layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]] decoder_layers.append( layer_class(config, layer_idx=i, cache_config=cache_config, quant_config=quant_config)) self.layers = nn.ModuleList(decoder_layers) self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, conv_state: torch.Tensor, ssm_state: torch.Tensor, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] kv_cache = None current_ssm_state = None current_conv_state = None if isinstance(layer, JambaAttentionDecoderLayer): kv_cache = kv_caches[(i - self.config.attn_layer_offset) // self.config.attn_layer_period] if isinstance(layer, JambaMambaDecoderLayer): current_state_layer = i - (1 + (i - self.config.attn_layer_offset) // self.config.attn_layer_period) current_ssm_state = ssm_state[current_state_layer] current_conv_state = conv_state[current_state_layer] hidden_states, residual = layer( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, residual=residual, conv_state=current_conv_state, ssm_state=current_ssm_state, ) hidden_states, _ = self.final_layernorm(hidden_states, residual) return hidden_states class JambaForCausalLM(nn.Module, HasInnerState): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "embed_tokens", "lm_head", ] embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] def __init__( self, config: JambaConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, scheduler_config: Optional[SchedulerConfig] = None, ) -> None: assert not scheduler_config.chunked_prefill_enabled, \ "Jamba currently does not support chunked prefill" assert not cache_config.enable_prefix_caching, \ "Jamba currently does not support prefix caching" super().__init__() self.config = config self.scheduler_config = scheduler_config self.model = JambaModel(config, cache_config=cache_config, quant_config=quant_config, lora_config=lora_config) self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE # We need bigger padding if using lora for kernel # compatibility if not lora_config else lora_config.lora_vocab_padding_size, ) # Used to track and store by the Mamba cache between steps. self.mamba_cache: Optional[MambaCacheManager] = None self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size) self.sampler = Sampler() def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, **kwargs): if self.mamba_cache is None: max_batch_size = (_get_graph_batch_size( self.scheduler_config.max_num_seqs) if self.scheduler_config else max(_BATCH_SIZES_TO_CAPTURE) + 2) layers_type = self.config.layers_block_type num_mamba_layers = sum( [layer_type == "mamba" for layer_type in layers_type]) self.mamba_cache = MambaCacheManager( self.lm_head.weight.dtype, num_mamba_layers, max_batch_size, *self._get_mamba_cache_shape()) if "seqlen_agnostic_capture_inputs" not in kwargs: # We get here only on Prefill/Eager mode runs assert all( key in kwargs for key in ["request_ids_to_seq_ids", "finished_requests_ids"]) request_ids_to_seq_ids = kwargs["request_ids_to_seq_ids"] finished_requests_ids = kwargs["finished_requests_ids"] self.mamba_cache.release_finished_requests(finished_requests_ids) batch_size = input_ids.shape[0] if attn_metadata.prefill_metadata: batch_size = len(request_ids_to_seq_ids) mamba_cache_tensors = self.mamba_cache.prepare_current_run_state( request_ids_to_seq_ids, batch_size, finished_requests_ids) else: # CUDA graph capturing runs mamba_cache_tensors = kwargs["seqlen_agnostic_capture_inputs"] hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata, mamba_cache_tensors[0], mamba_cache_tensors[1]) return hidden_states def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs): return self.mamba_cache.copy_inputs_before_cuda_graphs( input_buffers, **kwargs) def get_seqlen_agnostic_capture_inputs(self, batch_size: int): return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size) def _get_mamba_cache_shape( self) -> Tuple[Tuple[int, int], Tuple[int, int]]: world_size = get_tensor_model_parallel_world_size() hidden_size = self.config.hidden_size conv_state_shape = ( self.config.mamba_expand * hidden_size // world_size, self.config.mamba_d_conv, ) temporal_state_shape = ( self.config.mamba_expand * hidden_size // world_size, self.config.mamba_d_state, ) return conv_state_shape, temporal_state_shape def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: Optional[torch.Tensor], sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.num_experts) params_dict = dict(self.named_parameters()) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if "rotary_emb.inv_freq" in name: continue if "A_log" in name: name = name.replace("A_log", "A") if ".self_attn." in name: name = name.replace(".self_attn", "") if "feed_forward" in name and not _is_moe_layer(name): ## map MLP layers to expert with ID=0 name = name.replace("feed_forward", "feed_forward.experts.0") for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue if 'experts' in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for ( param_name, weight_name, expert_id, shard_id, ) in expert_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, weight_name, shard_id=shard_id, expert_id=expert_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) def _is_moe_layer(name: str): return any( [experts_name in name for experts_name in [ "experts", "router", ]])