# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py # Copyright 2023 The vLLM team. # Copyright 2023 CTranslate2, and Michael Feil # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPTBigCode model compatible with HuggingFace weights.""" from typing import Iterable, List, Optional, Tuple import torch from torch import nn from transformers import GPTBigCodeConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.common.utils import progress_bar from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class GPTBigCodeAttention(nn.Module): def __init__( self, config: GPTBigCodeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.hidden_size = config.hidden_size total_num_heads = config.num_attention_heads self.tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert total_num_heads % self.tensor_model_parallel_world_size == 0 self.num_heads = (total_num_heads // self.tensor_model_parallel_world_size) self.head_dim = self.hidden_size // total_num_heads self.scale = self.head_dim**-0.5 self.multi_query = config.multi_query if self.multi_query: total_num_kv_heads = 1 self.num_kv_heads = 1 else: total_num_kv_heads = total_num_heads self.num_kv_heads = self.num_heads self.kv_dim = self.head_dim * self.num_kv_heads self.c_attn = QKVParallelLinear( self.hidden_size, self.head_dim, total_num_heads, total_num_kv_heads, bias=True, quant_config=quant_config, ) self.c_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=True, quant_config=quant_config, ) self.attn = Attention(self.num_heads, self.head_dim, scale=self.scale, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.split( [ self.hidden_size // self.tensor_model_parallel_world_size, self.kv_dim, self.kv_dim ], dim=-1, ) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) attn_output, _ = self.c_proj(attn_output) return attn_output class GPTBigMLP(nn.Module): def __init__( self, intermediate_size: int, config: GPTBigCodeConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() hidden_size = config.hidden_size self.c_fc = ColumnParallelLinear( hidden_size, intermediate_size, bias=True, quant_config=quant_config, ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=True, quant_config=quant_config, ) self.act = get_act_fn(config.activation_function, quant_config, intermediate_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.c_proj(hidden_states) return hidden_states class GPTBigCodeBlock(nn.Module): def __init__( self, config: GPTBigCodeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() hidden_size = config.hidden_size inner_dim = (config.n_inner if config.n_inner is not None else 4 * hidden_size) self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTBigCodeAttention(config, cache_config, quant_config) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTBigMLP(inner_dim, config, quant_config) def forward( self, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn( hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states class GPTBigCodeModel(nn.Module): def __init__( self, config: GPTBigCodeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config assert not config.add_cross_attention self.embed_dim = config.hidden_size self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.h = nn.ModuleList([ GPTBigCodeBlock(config, cache_config, quant_config) for _ in range(config.num_hidden_layers) ]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds for i in range(len(self.h)): layer = self.h[i] hidden_states = layer(hidden_states, kv_caches[i], attn_metadata) hidden_states = self.ln_f(hidden_states) return hidden_states class GPTBigCodeForCausalLM(nn.Module): def __init__( self, config: GPTBigCodeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.quant_config = quant_config self.transformer = GPTBigCodeModel(config, cache_config, quant_config) self.lm_head = self.transformer.wte self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters(remove_duplicate=False)) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if "lm_head.weight" in name: continue if ".attn.bias" in name: # Skip attention mask. # NOTE: "c_attn.bias" should not be skipped. continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)