/* * Modified by Neural Magic * Copyright (C) Marlin.2024 Elias Frantar * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include template inline std::string str(T x) { return std::to_string(x); } namespace marlin_moe { constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 // Instances of `Vec` are used to organize groups of >>registers<<, as needed // for instance as inputs to tensor core operations. Consequently, all // corresponding index accesses must be compile-time constants, which is why we // extensively use `#pragma unroll` throughout the kernel code to guarantee // this. template struct Vec { T elems[n]; __device__ T& operator[](int i) { return elems[i]; } }; using I4 = Vec; // Matrix fragments for tensor core instructions; their precise layout is // documented here: // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type using FragA = Vec; using FragB = Vec; using FragC = Vec; using FragS = Vec; // quantization scales // Predicated asynchronous global->shared copy; used for inputs A where we apply // predication to handle batchsizes that are not multiples of 16. __device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, bool pred = true) { const int BYTES = 16; uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile( "{\n" " .reg .pred p;\n" " setp.ne.b32 p, %0, 0;\n" " @p cp.async.cg.shared.global [%1], [%2], %3;\n" "}\n" ::"r"((int)pred), "r"(smem), "l"(glob_ptr), "n"(BYTES)); } // Asynchronous global->shared copy __device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) { const int BYTES = 16; uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile( "{\n" " cp.async.cg.shared.global [%0], [%1], %2;\n" "}\n" ::"r"(smem), "l"(glob_ptr), "n"(BYTES)); } // Async copy fence. __device__ inline void cp_async_fence() { asm volatile("cp.async.commit_group;\n" ::); } // Wait until at most `n` async copy stages are still pending. template __device__ inline void cp_async_wait() { asm volatile("cp.async.wait_group %0;\n" ::"n"(n)); } // m16n8k16 tensor core mma instruction with fp16 inputs and fp32 // output/accumulation. __device__ inline void mma(const FragA& a_frag, const FragB& frag_b, FragC& frag_c) { const uint32_t* a = reinterpret_cast(&a_frag); const uint32_t* b = reinterpret_cast(&frag_b); float* c = reinterpret_cast(&frag_c); asm volatile( "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); } // Instruction for loading a full 16x16 matrix fragment of operand A from shared // memory, directly in tensor core layout. __device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { uint32_t* a = reinterpret_cast(&frag_a); uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) : "r"(smem)); } // Lookup-table based 3-input logical operation; explicitly used for // dequantization as the compiler does not seem to automatically recognize it in // all cases. template __device__ inline int lop3(int a, int b, int c) { int res; asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(res) : "r"(a), "r"(b), "r"(c), "n"(lut)); return res; } // Efficiently dequantize an int32 value into a full B-fragment of 4 fp16 // values. We mostly follow the strategy in the link below, with some small // changes: // https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h __device__ inline FragB dequant(int q) { const int LO = 0x000f000f; const int HI = 0x00f000f0; const int EX = 0x64006400; // Guarantee that the `(a & b) | c` operations are LOP3s. int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point // directly into `SUB` and `ADD`. const int SUB = 0x64086408; const int MUL = 0x2c002c00; const int ADD = 0xd480d480; FragB frag_b; frag_b[0] = __hsub2(*reinterpret_cast(&lo), *reinterpret_cast(&SUB)); frag_b[1] = __hfma2(*reinterpret_cast(&hi), *reinterpret_cast(&MUL), *reinterpret_cast(&ADD)); return frag_b; } // Multiply dequantized values by the corresponding quantization scale; used // only for grouped quantization. __device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]); frag_b[0] = __hmul2(frag_b[0], s); frag_b[1] = __hmul2(frag_b[1], s); } // Given 2 floats multiply by 2 scales (halves) __device__ inline void scale_float(float* c, FragS& s) { __half* s_ptr = reinterpret_cast<__half*>(&s); c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); } // Same as above, but for act_order (each K is multiplied individually) __device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2, FragS& frag_s_3, FragS& frag_s_4, int i) { __half2 s_val_1_2; s_val_1_2.x = reinterpret_cast<__half*>(&frag_s_1)[i]; s_val_1_2.y = reinterpret_cast<__half*>(&frag_s_2)[i]; __half2 s_val_3_4; s_val_3_4.x = reinterpret_cast<__half*>(&frag_s_3)[i]; s_val_3_4.y = reinterpret_cast<__half*>(&frag_s_4)[i]; frag_b[0] = __hmul2(frag_b[0], s_val_1_2); frag_b[1] = __hmul2(frag_b[1], s_val_3_4); } // Wait until barrier reaches `count`, then lock for current threadblock. __device__ inline void barrier_acquire(int* lock, int count) { if (threadIdx.x == 0) { int state = -1; do // Guarantee that subsequent writes by this threadblock will be visible // globally. asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" : "=r"(state) : "l"(lock)); while (state != count); } __syncthreads(); } // Release barrier and increment visitation count. __device__ inline void barrier_release(int* lock, bool reset = false) { __syncthreads(); if (threadIdx.x == 0) { if (reset) { lock[0] = 0; return; } int val = 1; // Make sure that all writes since acquiring this barrier are visible // globally, while releasing the barrier. asm volatile("fence.acq_rel.gpu;\n"); asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" : : "l"(lock), "r"(val)); } } // For a given "a" of size [M,K] performs a permutation of the K columns based // on the given "perm" indices. __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr, int4* __restrict__ out_int4_ptr, int size_m, int size_k, int block_rows) { int start_row = block_rows * blockIdx.x; int finish_row = start_row + block_rows; if (finish_row > size_m) { finish_row = size_m; } int cur_block_rows = finish_row - start_row; int row_stride = size_k * sizeof(half) / 16; auto permute_row = [&](int row) { int iters = size_k / blockDim.x; int rest = size_k % blockDim.x; int offset = row * row_stride; half const* a_row_half = reinterpret_cast(a_int4_ptr + offset); half* out_half = reinterpret_cast(out_int4_ptr + offset); int base_k = 0; for (int i = 0; i < iters; i++) { int cur_k = base_k + threadIdx.x; int src_pos = perm_int_ptr[cur_k]; out_half[cur_k] = a_row_half[src_pos]; base_k += blockDim.x; } if (rest) { if (threadIdx.x < rest) { int cur_k = base_k + threadIdx.x; int src_pos = perm_int_ptr[cur_k]; out_half[cur_k] = a_row_half[src_pos]; } } }; for (int i = 0; i < cur_block_rows; i++) { int cur_row = start_row + i; if (cur_row < size_m) { permute_row(cur_row); } } } __global__ void compute_expert_offsets(int const* __restrict__ topk_ids, int* __restrict__ expert_offsets, int topk_length, int block_size) { int expert_id = threadIdx.x; int num_experts = blockDim.x; int occurrences = 0; for (int i = 0; i < topk_length; ++i) { occurrences += (topk_ids[i] == expert_id); } expert_offsets[expert_id + 1] = occurrences; __syncthreads(); if (threadIdx.x == 0) { int tot_offset = 0; expert_offsets[0] = 0; for (int i = 0; i < num_experts; ++i) { tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size; expert_offsets[i + 1] = tot_offset; } } __syncthreads(); } template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __device__ inline void MarlinMoESingle( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn const int* __restrict__ sorted_ids, // int32 sorted ids of experts const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel int expert_idx, // idx of current expert int num_experts, // number of experts int topk, // topk parameter of moe int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int tot_m, // total number of rows in A and C int* locks, // extra global storage for barrier synchronization bool replicate_input, // do we use the same input for each expert? bool apply_weights, // apply weights to output int current_m_block // current m block to start kernel computation from ) { // For larger GEMMs we run multiple batchsize 64 versions in parallel for a // better partitioning with less reductions int parallel = 1; if (prob_m > 16 * thread_m_blocks) { parallel = prob_m / (16 * thread_m_blocks); prob_m = 16 * thread_m_blocks; } int k_tiles = prob_k / 16 / thread_k_blocks; int n_tiles = prob_n / 16 / thread_n_blocks; int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); if constexpr (!has_act_order && group_blocks != -1) { if (group_blocks >= thread_k_blocks) { // Ensure that the number of tiles in each stripe is a multiple of the // groupsize; this avoids an annoying special case where a stripe starts // in the middle of group. iters = (group_blocks / thread_k_blocks) * ceildiv(iters, (group_blocks / thread_k_blocks)); } } int slice_row = (iters * blockIdx.x) % k_tiles; int slice_col_par = (iters * blockIdx.x) / k_tiles; int slice_col = slice_col_par; int slice_iters; // number of threadblock tiles in the current slice int slice_count = 0; // total number of active threadblocks in the current slice int slice_idx; // index of threadblock in current slice; numbered bottom to // top // We can easily implement parallel problem execution by just remapping // indices and advancing global pointers if (slice_col_par >= n_tiles) { locks += (slice_col_par / n_tiles) * n_tiles; slice_col = slice_col_par % n_tiles; sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks; } // Compute all information about the current slice which is required for // synchronization. auto init_slice = [&]() { slice_iters = iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; if (slice_iters == 0) return; if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; slice_count = 1; slice_idx = 0; int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); if (col_first <= k_tiles * (slice_col_par + 1)) { int col_off = col_first - k_tiles * slice_col_par; slice_count = ceildiv(k_tiles - col_off, iters); if (col_off > 0) slice_count++; int delta_first = iters * blockIdx.x - col_first; if (delta_first < 0 || (col_off == 0 && delta_first == 0)) slice_idx = slice_count - 1; else { slice_idx = slice_count - 1 - delta_first / iters; if (col_off > 0) slice_idx--; } } if (slice_col == n_tiles) { sorted_ids += 16 * thread_m_blocks; locks += n_tiles; slice_col = 0; } }; init_slice(); // A sizes/strides // stride of the A matrix in global memory int a_gl_stride = prob_k / 8; // stride of an A matrix tile in shared memory constexpr int a_sh_stride = 16 * thread_k_blocks / 8; // delta between subsequent A tiles in global memory constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; // between subsequent accesses within a tile int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); // between shared memory writes constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); // between shared memory tile reads constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); // within a shared memory tile constexpr int a_sh_rd_delta_i = a_sh_stride * 16; // overall size of a tile constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); // number of shared write iterations for a tile constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); // B sizes/strides int b_gl_stride = 16 * prob_n / 32; constexpr int b_sh_stride = 32 * thread_n_blocks / 4; int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride); constexpr int b_sh_wr_delta = threads; constexpr int b_sh_rd_delta = threads; constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; // Scale sizes/strides without act_order int s_gl_stride = prob_n / 8; constexpr int s_sh_stride = 16 * thread_n_blocks / 8; constexpr int s_tb_groups = !has_act_order && group_blocks < thread_k_blocks ? thread_k_blocks / group_blocks : 1; constexpr int s_sh_stage = s_tb_groups * s_sh_stride; int s_gl_rd_delta = s_gl_stride; // Scale size/strides with act_order constexpr int tb_k = 16 * thread_k_blocks; constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; // constexpr int act_s_row_stride = 1; // int act_s_col_stride = act_s_row_stride * num_groups; int act_s_col_stride = 1; int act_s_col_warp_stride = act_s_col_stride * 8; int tb_n_warps = thread_n_blocks / 4; int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; constexpr int sorted_sh_stride = threads; constexpr int sorted_gl_stride = threads; // Global A read index of current thread. int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); a_gl_rd += a_gl_rd_delta_o * slice_row; // Shared write index of current thread. int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); // Shared read index. int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); b_gl_rd += b_sh_stride * slice_col; b_gl_rd += b_gl_rd_delta_o * slice_row; int b_sh_wr = threadIdx.x; int b_sh_rd = threadIdx.x; // For act_order constexpr int k_iter_size = tb_k / b_sh_wr_iters; int slice_k_start = tb_k * slice_row; int slice_k_finish = slice_k_start + tb_k * slice_iters; int slice_k_start_shared_fetch = slice_k_start; int slice_n_offset = act_s_col_tb_stride * slice_col; // No act_order int s_gl_rd; if constexpr (group_blocks == -1 || group_blocks == 0) { s_gl_rd = s_sh_stride * slice_col + threadIdx.x; } else { s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + s_sh_stride * slice_col + threadIdx.x; } int s_sh_wr = threadIdx.x; bool s_sh_wr_pred = threadIdx.x < s_sh_stride; // We use a different scale layout for grouped and column-wise quantization as // we scale a `half2` tile in column-major layout in the former and in // row-major in the latter case. int s_sh_rd; if constexpr (group_blocks != -1) s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) / 4; else s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) % 4; int sh_first_group_id = -1; int sh_num_groups = -1; constexpr int sh_max_num_groups = 32; int shs_size; if constexpr (has_act_order) shs_size = sh_max_num_groups * s_sh_stride + threads; else shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; extern __shared__ int4 sh[]; // Shared memory storage for global fetch pipelines. int4* sh_a = sh; int4* sh_b = sh_a + (stages * a_sh_stage); int4* sh_g_idx = sh_b + (stages * b_sh_stage); int4* sh_s = sh_g_idx + (stages * g_idx_stage); int* sh_sorted = (int*)(sh_s + shs_size); // Precompute which thread should not read memory in which iterations; this is // needed if there are more threads than required for a certain tilesize or // when the batchsize is not a multiple of 16. bool a_sh_wr_pred[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { int a_idx = a_sh_wr_delta * i + a_sh_wr; int row = a_idx / a_gl_rd_delta_o; if (row >= prob_m) { a_sh_wr_pred[i] = false; } else { a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; } } // To ensure that writing and reading A tiles to/from shared memory, the // latter in fragment format, is fully bank conflict free, we need to use a // rather fancy XOR-based layout. The key here is that neither reads nor // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the // same shared memory banks. Further, it seems (based on NSight-Compute) that // each warp must also write a consecutive memory segment? auto transform_a = [&](int i) { int row = i / a_gl_rd_delta_o; return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; }; // Since the computation of this remapping is non-trivial and, due to our main // loop unrolls, all shared memory accesses are static, we simply precompute // both transformed reads and writes. int a_sh_wr_trans[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < thread_m_blocks; j++) a_sh_rd_trans[i][j] = transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); } // Since B-accesses have non-constant stride they have to be computed at // runtime; we break dependencies between subsequent accesses with a tile by // maintining multiple pointers (we have enough registers), a tiny // optimization. const int4* B_ptr[b_sh_wr_iters]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; // Register storage for double buffer of shared memory reads. FragA frag_a[2][thread_m_blocks]; I4 frag_b_quant[2]; FragC frag_c[thread_m_blocks][4][2]; FragS frag_s[2][4]; // No act-order FragS act_frag_s[2][4][4]; // For act-order // Zero accumulators. auto zero_accums = [&]() { #pragma unroll for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) reinterpret_cast(frag_c)[i] = 0; }; auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, int last_group_id) { sh_first_group_id = first_group_id; sh_num_groups = last_group_id - first_group_id + 1; if (sh_num_groups < sh_max_num_groups) { sh_num_groups = sh_max_num_groups; } if (sh_first_group_id + sh_num_groups > num_groups) { sh_num_groups = num_groups - sh_first_group_id; } int row_offset = first_group_id * s_gl_stride; if (is_async) { for (int i = 0; i < sh_num_groups; i++) { if (threadIdx.x < s_sh_stride) { cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], &scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + threadIdx.x]); } } } else { for (int i = 0; i < sh_num_groups; i++) { if (threadIdx.x < s_sh_stride) { sh_s[(i * s_sh_stride) + threadIdx.x] = scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + threadIdx.x]; } } } }; // Asynchronously fetch the next A, B and s tile from global to the next // shared memory pipeline location. auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { if (pred) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off; int row = a_idx / a_gl_stride; int sorted_row = replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; if (sorted_row < tot_m * (replicate_input ? 1 : topk) && new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx], a_sh_wr_pred[i]); } } int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]); B_ptr[i] += b_gl_rd_delta_o; } if constexpr (has_act_order) { // Fetch g_idx thread-block portion int full_pipe = a_off; int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; if (cur_k < prob_k && cur_k < slice_k_finish) { int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; int4 const* cur_g_idx_stage_ptr = reinterpret_cast(&g_idx[cur_k]); if (threadIdx.x < g_idx_stage) { cp_async4_pred(&sh_g_idx_stage[threadIdx.x], &cur_g_idx_stage_ptr[threadIdx.x]); } } } else { if constexpr (group_blocks != -1) { int4* sh_s_stage = sh_s + s_sh_stage * pipe; if constexpr (group_blocks >= thread_k_blocks) { // Only fetch scales if this tile starts a new group if (pipe % (group_blocks / thread_k_blocks) == 0) { if (s_sh_wr_pred) { cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); } s_gl_rd += s_gl_rd_delta; } } else { for (int i = 0; i < s_tb_groups; i++) { if (s_sh_wr_pred) { cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], &scales_ptr[s_gl_rd]); } s_gl_rd += s_gl_rd_delta; } } } } } // Insert a fence even when we are winding down the pipeline to ensure that // waiting is also correct at this point. cp_async_fence(); }; // TODO we are currently hitting illegal memory accesses when fetching // sorted_ids to shared data: fix this auto fetch_sorted_ids_to_shared = [&]() { const int mpt = ceildiv(prob_m, threads); for (int i = 0; i < mpt; i++) { if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; } } }; // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; // Load the next sub-tile from the current location in the shared memory pipe // into the current register buffer. auto fetch_to_registers = [&](int k, int pipe) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < thread_m_blocks; i++) ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); int4* sh_b_stage = sh_b + b_sh_stage * pipe; frag_b_quant[k % 2] = *reinterpret_cast( &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]); }; bool is_same_group[stages]; int same_group_id[stages]; auto init_same_group = [&](int pipe) { int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); int group_id_1 = sh_g_idx_int_ptr[0]; int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; is_same_group[pipe] = group_id_1 == group_id_2; same_group_id[pipe] = group_id_1; }; auto fetch_scales_to_registers = [&](int k, int full_pipe) { int pipe = full_pipe % stages; if constexpr (!has_act_order) { // No act-order case if constexpr (group_blocks != -1) { if constexpr (group_blocks >= thread_k_blocks) { int4* sh_s_stage = sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * (pipe / (group_blocks / thread_k_blocks))); reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; } else { int warp_id = threadIdx.x / 32; int n_warps = thread_n_blocks / 4; int warp_row = warp_id / n_warps; int cur_k = warp_row * 16; cur_k += k_iter_size * (k % b_sh_wr_iters); int k_blocks = cur_k / 16; int cur_group_id = k_blocks / group_blocks; int4* sh_s_stage = sh_s + s_sh_stage * pipe; reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; } } return; } // Act-order case // Determine K of the "current" thread-block int cur_k = slice_k_start + tb_k * full_pipe; if (cur_k >= prob_k || cur_k >= slice_k_finish) { return; } // Reset (to current thread-block) since we read g_idx portion from the // shared memory cur_k = 0; // Progress to current iteration cur_k += k_iter_size * (k % b_sh_wr_iters); // Determine "position" inside the thread-block (based on warp and // thread-id) int warp_id = threadIdx.x / 32; int n_warps = thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N int warp_row = warp_id / n_warps; int warp_col = warp_id % n_warps; cur_k += warp_row * 16; int th_id = threadIdx.x % 32; cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix int s_col_shift = /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) + (th_id / 4) * act_s_col_stride; if (is_same_group[pipe]) { if (k % 2 == 0) { *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + s_col_shift]; } else { *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = *(reinterpret_cast(&(act_frag_s[(k - 1) % 2][0][0]))); } for (int i = 1; i < 4; i++) { *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))); } return; } int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); constexpr int k_frag_offsets[4] = {0, 1, 8, 9}; // Tensor core offsets per thread #pragma unroll for (int i = 0; i < 4; i++) { int actual_k = cur_k + k_frag_offsets[i]; int group_id = sh_g_idx_int_ptr[actual_k]; int rel_group_id = group_id - sh_first_group_id; *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = sh_s[rel_group_id * s_sh_stride + s_col_shift]; } }; // Execute the actual tensor core matmul of a sub-tile. auto matmul = [&](int k) { // We have the m dimension as the inner loop in order to encourage overlapping // dequantization and matmul operations. #pragma unroll for (int j = 0; j < 4; j++) { int b_quant = frag_b_quant[k % 2][j]; int b_quant_shift = b_quant >> 8; FragB frag_b0 = dequant(b_quant); // Apply scale to frag_b0 if constexpr (has_act_order) { scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0); } else { if constexpr (group_blocks != -1) { scale(frag_b0, frag_s[k % 2][j], 0); } } FragB frag_b1 = dequant(b_quant_shift); // Apply scale to frag_b1 if constexpr (has_act_order) { scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1); } else { if constexpr (group_blocks != -1) { scale(frag_b1, frag_s[k % 2][j], 1); } } #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); } } }; // Since we slice across the k dimension of a tile in order to increase the // number of warps while keeping the n dimension of a tile reasonable, we have // multiple warps that accumulate their partial sums of the same output // location; which we have to reduce over in the end. We do in shared memory. auto thread_block_reduce = [&]() { constexpr int red_off = threads / b_sh_stride / 2; if (red_off >= 1) { int red_idx = threadIdx.x / b_sh_stride; constexpr int red_sh_stride = b_sh_stride * 4 * 2; constexpr int red_sh_delta = b_sh_stride; int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); // Parallel logarithmic shared memory reduction. We make sure to avoid any // unnecessary read or write iterations, e.g., for two warps we write only // once by warp 1 and read only once by warp 0. #pragma unroll for (int m_block = 0; m_block < thread_m_blocks; m_block++) { #pragma unroll for (int i = red_off; i > 0; i /= 2) { if (i <= red_idx && red_idx < 2 * i) { #pragma unroll for (int j = 0; j < 4 * 2; j++) { int red_sh_wr = red_sh_delta * j + (red_sh_rd - red_sh_stride * i); if (i < red_off) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); float* c_wr = reinterpret_cast(&sh[red_sh_wr]); #pragma unroll for (int k = 0; k < 4; k++) reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += c_rd[k] + c_wr[k]; } sh[red_sh_wr] = reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; } } __syncthreads(); } if (red_idx == 0) { #pragma unroll for (int i = 0; i < 4 * 2; i++) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); #pragma unroll for (int j = 0; j < 4; j++) reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += c_rd[j]; } } __syncthreads(); } } }; // Since multiple threadblocks may process parts of the same column slice, we // finally have to globally reduce over the results. As the striped // partitioning minimizes the number of such reductions and our outputs are // usually rather small, we perform this reduction serially in L2 cache. auto global_reduce = [&](bool first = false, bool last = false) { // We are very careful here to reduce directly in the output buffer to // maximize L2 cache utilization in this step. To do this, we write out // results in FP16 (but still reduce with FP32 compute). constexpr int active_threads = 32 * thread_n_blocks / 4; if (threadIdx.x < active_threads) { int c_gl_stride = prob_n / 8; int c_gl_wr_delta_o = 8 * c_gl_stride; int c_gl_wr_delta_i = 4 * (active_threads / 32); int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + 4 * (threadIdx.x / 32) + threadIdx.x % 4; c_gl_wr += (2 * thread_n_blocks) * slice_col; constexpr int c_sh_wr_delta = active_threads; int c_sh_wr = threadIdx.x; int row = (threadIdx.x % 32) / 4; if (!first) { // Interestingly, doing direct global accesses here really seems to mess up // the compiler and lead to slowdowns, hence we also use async-copies even // though these fetches are not actually asynchronous. #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { int c_idx = c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); int sorted_row = sorted_ids[c_idx / c_gl_stride]; int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], sorted_row < tot_m * topk && (8 * (i / 2) + row < prob_m && (i < (thread_m_blocks - 1) * 4 || sorted_ids[8 * (i / 2) + row] < tot_m * topk))); } cp_async_fence(); cp_async_wait<0>(); } #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { if (8 * (i / 2) + row < prob_m && (i < (thread_m_blocks - 1) * 4 || sorted_ids[8 * (i / 2) + row] < tot_m * topk)) { if (!first) { int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; #pragma unroll for (int j = 0; j < 2 * 4; j++) { reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += __half2float(reinterpret_cast<__half*>(&c_red)[j]); } } if (!last) { int4 c; #pragma unroll for (int j = 0; j < 2 * 4; j++) { reinterpret_cast<__half*>(&c)[j] = __float2half(reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); } int c_idx = c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); int row = sorted_ids[c_idx / c_gl_stride]; if (row < tot_m * topk) { int new_idx = row * c_gl_stride + c_idx % c_gl_stride; C[new_idx] = c; } } } } } }; // Write out the reduce final result in the correct layout. We only actually // reshuffle matrix fragments in this step, the reduction above is performed // in fragment layout. auto write_result = [&]() { int c_gl_stride = prob_n / 8; constexpr int c_sh_stride = 2 * thread_n_blocks + 1; int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); constexpr int c_sh_rd_delta = c_sh_stride * (threads / (2 * thread_n_blocks)); int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); c_gl_wr += (2 * thread_n_blocks) * slice_col; int c_sh_wr = (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; c_sh_wr += 32 * (threadIdx.x / 32); int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); int c_gl_wr_end = c_gl_stride * prob_m; // We first reorder in shared memory to guarantee the most efficient final // global write patterns auto write = [&](int idx, float c0, float c1, FragS& s) { half2 res = __halves2half2(__float2half(c0), __float2half(c1)); // For per-column quantization we finally apply the scale here if constexpr (!has_act_order && group_blocks == -1) { res = __hmul2(res, s[0]); } ((half2*)sh)[idx] = res; }; if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { #pragma unroll for (int j = 0; j < 4; j++) { int wr = c_sh_wr + 8 * j; write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); } c_sh_wr += 16 * (4 * c_sh_stride); } } __syncthreads(); #pragma unroll for (int i = 0; i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); i++) { if (c_gl_wr < c_gl_wr_end) { int row = sorted_ids[c_gl_wr / c_gl_stride]; if (row < tot_m * topk) { int off = row * c_gl_stride + c_gl_wr % c_gl_stride; if (!apply_weights) { C[off] = sh[c_sh_rd]; } else { __half* ctrg = reinterpret_cast<__half*>(&C[off]); __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]); for (int j = 0; j < 8; ++j) { ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j])); } } c_gl_wr += c_gl_wr_delta; c_sh_rd += c_sh_rd_delta; } } } }; // Start global fetch and register load pipelines. auto start_pipes = [&]() { // TODO re-enable after fixing this function // fetch_sorted_ids_to_shared(); __syncthreads(); #pragma unroll for (int i = 0; i < stages - 1; i++) { if (has_act_order && i == 0) { int last_g_idx = slice_k_start + stages * tb_k * 2; if (last_g_idx >= prob_k) { last_g_idx = prob_k - 1; } fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); } fetch_to_shared(i, i, i < slice_iters); } zero_accums(); wait_for_stage(); init_same_group(0); fetch_to_registers(0, 0); fetch_scales_to_registers(0, 0); a_gl_rd += a_gl_rd_delta_o * (stages - 1); slice_k_start_shared_fetch += tb_k * (stages - 1); }; if (slice_iters) { start_pipes(); } // Main loop. while (slice_iters) { // We unroll over both the global fetch and the register load pipeline to // ensure all shared memory accesses are static. Note that both pipelines // have even length meaning that the next iteration will always start at // index 0. #pragma unroll for (int pipe = 0; pipe < stages;) { #pragma unroll for (int k = 0; k < b_sh_wr_iters; k++) { fetch_to_registers(k + 1, pipe % stages); fetch_scales_to_registers(k + 1, pipe); if (k == b_sh_wr_iters - 2) { fetch_to_shared((pipe + stages - 1) % stages, pipe, slice_iters >= stages); pipe++; wait_for_stage(); init_same_group(pipe % stages); } matmul(k); } slice_iters--; if (slice_iters == 0) { break; } } a_gl_rd += a_gl_rd_delta_o * stages; slice_k_start += tb_k * stages; slice_k_start_shared_fetch += tb_k * stages; if constexpr (has_act_order) { int first_group_id = g_idx[slice_k_start]; int last_g_idx = slice_k_start + stages * tb_k * 2; if (last_g_idx >= prob_k) { last_g_idx = prob_k - 1; } int last_group_id = g_idx[last_g_idx]; if (last_group_id >= sh_first_group_id + sh_num_groups) { fetch_scales_to_shared(false, first_group_id, last_group_id); __syncthreads(); } } // Process results and, if necessary, proceed to the next column slice. // While this pattern may not be the most readable, other ways of writing // the loop seemed to noticeably worse performance after compilation. if (slice_iters == 0) { cp_async_wait<0>(); bool last = slice_idx == slice_count - 1; // For per-column scales, we only fetch them here in the final step before // write-out if constexpr (!has_act_order && group_blocks == -1) { if (last) { if (s_sh_wr_pred) { cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); } cp_async_fence(); } } thread_block_reduce(); if constexpr (!has_act_order && group_blocks == -1) { if (last) { cp_async_wait<0>(); __syncthreads(); if (threadIdx.x / 32 < thread_n_blocks / 4) { reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; } } } if (slice_count > 1) { // only globally reduce if there is more than one // block in a slice barrier_acquire(&locks[slice_col], slice_idx); global_reduce(slice_idx == 0, last); barrier_release(&locks[slice_col], last); } if (last) // only the last block in a slice actually writes the result write_result(); slice_row = 0; slice_col_par++; slice_col++; init_slice(); if (slice_iters) { a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; if (slice_col == 0) { #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; } // Update slice k/n for scales loading if constexpr (has_act_order) { slice_k_start = tb_k * slice_row; slice_k_finish = slice_k_start + tb_k * slice_iters; slice_k_start_shared_fetch = slice_k_start; slice_n_offset = act_s_col_tb_stride * slice_col; } else { s_gl_rd = s_sh_stride * slice_col + threadIdx.x; } start_pipes(); } } } } template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void MarlinMoE( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel int expert_idx, // idx of current expert int num_experts, // number of experts int topk, // topk parameter of moe int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int tot_m, // total number of rows in A and C int* locks, // extra global storage for barrier synchronization bool replicate_input, // do we use the same input for each expert? bool apply_weights, // apply weights to output int current_m_block, // current m block to start kernel computation from int max_par // maximum parallelism ) { int m_block_ctr = current_m_block; const int* sorted_ids_expert = sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par; int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx]; if (tot_its == 0) { return; } int tot_m_blocks = ceildiv(tot_its, 16); int pad = 16 * tot_m_blocks - tot_its; if (m_block_ctr >= tot_m_blocks) { return; } int max_block = tot_m_blocks - m_block_ctr; prob_m = tot_its - 16 * m_block_ctr; int par = 1; if (max_block > 4) { // Note that parallel > 1 currently only works for inputs without any // padding par = (16 * max_block - pad) / 64; par = min((16 * max_block - pad) / 64, max_par); prob_m = 64 * par; m_block_ctr += 4 * (par - 1); max_block = 4; } if (max_block == 1) { MarlinMoESingle( A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else if (max_block == 2) { MarlinMoESingle( A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else if (max_block == 3) { MarlinMoESingle( A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } else { MarlinMoESingle( A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, current_m_block); } } #else __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr, int4* __restrict__ out_int4_ptr, int size_m, int size_k, int block_rows) { // Marlin is not implemented yet for SM < 8.0 assert(false); return; } __global__ void compute_expert_offsets(int const* __restrict__ topk_ids, int* __restrict__ expert_offsets, int topk_length, int block_size) { // Marlin is not implemented yet for SM < 8.0 assert(false); return; } template shared // fetch pipeline const bool has_act_order, // whether act_order is enabled const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void MarlinMoE( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn const int* __restrict__ sorted_ids, // int32 sorted ids of experts const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, int num_groups, // number of scale groups per output channel int expert_idx, // idx of current expert int num_experts, // number of experts int topk, // topk parameter of moe int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int tot_m, // total number of rows in A and C int* locks, // extra global storage for barrier synchronization bool replicate_input, // do we use the same input for each expert? bool apply_weights, // apply weights to output int current_m_block, // current m block to start kernel computation from int max_par // maximum parallelism ) { // Marlin is not implemented yet for SM < 8.0 assert(false); return; } #endif // 8 warps are a good choice since every SM has 4 schedulers and having more // than 1 warp per schedule allows some more latency hiding. At the same time, // we want relatively few warps to have many registers per warp and small tiles. const int USER_THREADS = 256; // Note: This is only used with user-provided thread_k/n const int STAGES = 4; // 4 pipeline stages fit into shared memory // const int SHARED_MEM = // 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0) static constexpr int min_thread_n = 64; static constexpr int min_thread_k = 64; #define __CALL_IF_MOE(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \ HAS_ACT_ORDER, GROUP_BLOCKS, NUM_THREADS) \ else if (thread_m_blocks == THREAD_M_BLOCKS && \ thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \ num_threads == NUM_THREADS) { \ cudaFuncSetAttribute( \ MarlinMoE, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ MarlinMoE \ <<>>( \ A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ replicate_input, apply_weights, m_block, max_par); \ } typedef struct { int thread_k; int thread_n; int num_threads; } thread_config_t; thread_config_t small_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {128, 128, 256}, // Default {128, 64, 128}, // Reduce N 2X, same K {64, 256, 256}, // Reduce K 2X, increase N 2X {64, 128, 128}, // Reduce K 2X, same N }; thread_config_t large_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {64, 256, 256}, // Default {128, 128, 256}, // Reduce N 2X, increase K 2X {64, 128, 128}, // Reduce N 2X, same K {128, 64, 128}, // Reduce N 4X, increase K 2X }; bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n, int prob_k) { // Sanity if (th_config.thread_k == -1 || th_config.thread_n == -1 || th_config.num_threads == -1) { return false; } // Verify K/N are divisible by thread K/N if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) { return false; } // thread_k can be only 128 or 64 (because it must be less than groupsize // which is 128) if (th_config.thread_k != 128 && th_config.thread_k != 64) { return false; } // Verify min for thread K/N if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) { return false; } // num_threads must be at least 128 (= 4 warps) if (th_config.num_threads < 128) { return false; } return true; } thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) { if (prob_m <= 16) { for (auto th_config : small_batch_thread_configs) { if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { return th_config; } } } else { for (auto th_config : large_batch_thread_configs) { if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { return th_config; } } } return thread_config_t{-1, -1, -1}; } #define CALL_IF_MOE(N_BLOCKS, K_BLOCKS, NUM_THREADS) \ __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ \ __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ \ __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ \ __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ \ __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, const void* sorted_ids, const void* topk_weights, const void* topk_ids, const void* s, const void* g_idx, const void* perm, void* a_tmp, void* expert_offsets, int prob_m, int prob_n, int prob_k, void* workspace, bool has_act_order, bool is_k_full, int num_groups, int group_size, int num_experts, int topk, int moe_block_size, int dev, cudaStream_t stream, int thread_k, int thread_n, int sms, int max_par, bool replicate_input, bool apply_weights) { TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); if (sms == -1) { cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); } // Set thread config thread_config_t th_config; if (thread_k != -1 && thread_n != -1) { // User-defined config th_config = thread_config_t{thread_k, thread_n, USER_THREADS}; } else { // Auto config th_config = determine_thread_config(prob_m, prob_n, prob_k); } TORCH_CHECK(is_valid_config(th_config, prob_m, prob_n, prob_k), "Invalid thread config: thread_k = " + str(th_config.thread_k) + ", thread_n = " + str(th_config.thread_n) + ", num_threads = " + str(th_config.num_threads) + " for MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]"); int num_threads = th_config.num_threads; thread_k = th_config.thread_k; thread_n = th_config.thread_n; int thread_k_blocks = thread_k / 16; int thread_n_blocks = thread_n / 16; int blocks = sms; TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, " is not divisible by thread_n = ", thread_n); TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, " is not divisible by thread_k = ", thread_k); int group_blocks = 0; if (has_act_order) { if (is_k_full) { TORCH_CHECK(group_size != -1); group_blocks = group_size / 16; TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, " is not divisible by group_blocks = ", group_blocks); } else { TORCH_CHECK(group_size == 0); group_blocks = 0; } } else { if (group_size == -1) { group_blocks = -1; } else { group_blocks = group_size / 16; TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, " is not divisible by group_blocks = ", group_blocks); } } int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); int tot_m = prob_m; const int* topk_ids_ptr = (const int*)topk_ids; int* expert_offsets_ptr = (int*)expert_offsets; compute_expert_offsets<<<1, num_experts, 0, stream>>>( topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size); bool do_permute_a = has_act_order; // If we have a full K, then we can run the non-act-order version of Marlin // (since the weight rows are reordered by increasing group ids, and by // having a full K, we have full original groups) if (is_k_full) { has_act_order = false; } for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) { const int4* A_ptr = (const int4*)A; int4* a_tmp_ptr = (int4*)a_tmp; const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx; int4* C_ptr = (int4*)C; const float* topk_weights_ptr = (const float*)topk_weights; const int* sorted_ids_ptr = (const int*)sorted_ids; const int4* s_ptr = (const int4*)s + (((group_size == -1 || group_size == 0) ? 1 : prob_k / group_size) * prob_n / 8) * expert_idx; const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx; const int* perm_ptr = (const int*)perm + prob_k * expert_idx; int* locks = (int*)workspace; if (do_permute_a) { // Permute A columns int topk_rows = replicate_input ? tot_m : tot_m * topk; int block_rows = ceildiv(topk_rows, blocks); permute_cols_kernel<<>>( A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows); A_ptr = a_tmp_ptr; } int max_m_blocks = ceildiv(tot_m, 16); for (int m_block = 0; m_block < max_m_blocks; m_block += 16) { // Define kernel configurations // make it max possible value int thread_m_blocks = 4; if (false) { } CALL_IF_MOE(16, 4, 256) CALL_IF_MOE(8, 8, 256) CALL_IF_MOE(8, 4, 128) CALL_IF_MOE(4, 8, 128) else { TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + str(prob_n) + ", " + str(prob_k) + "]" + ", has_act_order = " + str(has_act_order) + ", num_groups = " + str(num_groups) + ", group_size = " + str(group_size) + ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); } } } } } // namespace marlin_moe torch::Tensor marlin_gemm_moe( const torch::Tensor& a, const torch::Tensor& b_q_weights, const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, const torch::Tensor& topk_ids, const torch::Tensor& b_scales, const torch::Tensor& g_idx, const torch::Tensor& perm, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size, bool replicate_input, bool apply_weights) { int max_par = 4; int dev = a.get_device(); auto options_dtype = torch::TensorOptions().dtype(a.dtype()).device(a.device()); auto options_int = torch::TensorOptions().dtype(torch::kInt).device(a.device()); torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype); torch::Tensor a_tmp = replicate_input ? torch::zeros({size_m, size_k}, options_dtype) : torch::zeros({size_m, topk, size_k}, options_dtype); torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int); // thread_k: `k` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_k = -1; // thread_n: `n` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_n = -1; // sms: number of SMs to use for the kernel (can usually be left as auto -1) int sms = -1; // Detect groupsize and act_order int num_groups = -1; int group_size = -1; bool has_act_order = g_idx.size(1) != 0; int b_rank = b_scales.sizes().size(); TORCH_CHECK(b_rank == 3, "b_scales rank = ", b_rank, " is not 3"); TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2), " is not size_n = ", size_n); num_groups = b_scales.size(1); if (has_act_order) { if (is_k_full) { TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1"); TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k, ", is not divisible by num_groups = ", num_groups); group_size = size_k / num_groups; } else { group_size = 0; } } else { if (num_groups > 1) { TORCH_CHECK( size_k % num_groups == 0, "size_k = ", size_k, ", is not divisible by b_scales.size(0) = ", b_scales.size(0)); group_size = size_k / num_groups; } else { group_size = -1; } } marlin_moe::marlin_mm_moe_f16i4( a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(), topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), has_act_order, is_k_full, num_groups, group_size, num_experts, topk, moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par, replicate_input, apply_weights); return c; }