# coding=utf-8 # Adapted from # https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py # Copyright (c) Alibaba Cloud. # LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE """Inference-only QWen model compatible with HuggingFace weights.""" from typing import Any, Dict, Iterable, List, Optional, Tuple import torch from torch import nn from transformers import PretrainedConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.common.utils import progress_bar from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class QWenMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str = "silu", quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config) self.c_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, quant_config=quant_config) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.c_proj(x) return x class QWenAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, max_position_embeddings: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.hidden_size = hidden_size tensor_model_parallel_world_size = get_tensor_model_parallel_world_size( ) self.total_num_heads = num_heads assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.head_dim = hidden_size // self.total_num_heads self.c_attn = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, bias=True, quant_config=quant_config, ) self.c_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.scaling = self.head_dim**-0.5 self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, cache_config=cache_config, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.c_proj(attn_output) return output class QWenBlock(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) self.attn = QWenAttention(config.hidden_size, config.num_attention_heads, config.max_position_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, cache_config=cache_config, quant_config=quant_config) self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mlp = QWenMLP(config.hidden_size, config.intermediate_size // 2, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.ln_1(hidden_states) else: hidden_states, residual = self.ln_1(hidden_states, residual) hidden_states = self.attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.ln_2(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class QWenModel(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.vocab_size = config.vocab_size self.wte = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.h = nn.ModuleList([ QWenBlock(config, cache_config, quant_config) for _ in range(config.num_hidden_layers) ]) self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.wte(input_ids) residual = None for i in range(len(self.h)): layer = self.h[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], attn_metadata, residual, ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class QWenLMHeadModel(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.quant_config = quant_config self.transformer = QWenModel(config, cache_config, quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "w2", 0), ("gate_up_proj", "w1", 1), ] params_dict = dict(self.named_parameters()) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if "rotary_emb.inv_freq" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)