"""Utilities for downloading and initializing model weights.""" import fnmatch import glob import hashlib import json import os import tempfile from collections import defaultdict from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Union import filelock import gguf import huggingface_hub.constants import numpy as np import torch from huggingface_hub import HfFileSystem, hf_hub_download, snapshot_download from loguru import logger from safetensors.torch import load_file, safe_open, save_file from tqdm.auto import tqdm from transformers.utils import SAFE_WEIGHTS_INDEX_NAME from aphrodite.common.config import LoadConfig, ModelConfig from aphrodite.common.utils import print_warning_once from aphrodite.distributed import get_tensor_model_parallel_rank from aphrodite.platforms import current_platform from aphrodite.quantization import QuantizationConfig, get_quantization_config from aphrodite.quantization.schema import QuantParamSchema # use system-level temp directory for file locks, so that multiple users # can share the same lock without error. # lock files in the temp directory will be automatically deleted when the # system reboots, so users will not complain about annoying lock files temp_dir = tempfile.gettempdir() def enable_hf_transfer(): """automatically activates hf_transfer """ if "HF_HUB_ENABLE_HF_TRANSFER" not in os.environ: try: # enable hf hub transfer if available import hf_transfer # type: ignore # noqa huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER = True except ImportError: pass enable_hf_transfer() class DisabledTqdm(tqdm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs, disable=True) def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None): lock_dir = cache_dir or temp_dir os.makedirs(os.path.dirname(lock_dir), exist_ok=True) model_name = model_name_or_path.replace("/", "-") hash_name = hashlib.sha256(model_name.encode()).hexdigest() # add hash to avoid conflict with old users' lock files lock_file_name = hash_name + model_name + ".lock" # mode 0o666 is required for the filelock to be shared across users lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name), mode=0o666) return lock def _shared_pointers(tensors): ptrs = defaultdict(list) for k, v in tensors.items(): ptrs[v.data_ptr()].append(k) failing = [] for _, names in ptrs.items(): if len(names) > 1: failing.append(names) return failing def convert_bin_to_safetensor_file( pt_filename: str, sf_filename: str, ) -> None: loaded = torch.load(pt_filename, map_location="cpu") if "state_dict" in loaded: loaded = loaded["state_dict"] shared = _shared_pointers(loaded) for shared_weights in shared: for name in shared_weights[1:]: loaded.pop(name) # For tensors to be contiguous loaded = {k: v.contiguous() for k, v in loaded.items()} dirname = os.path.dirname(sf_filename) os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_filename, metadata={"format": "pt"}) # check file size sf_size = os.stat(sf_filename).st_size pt_size = os.stat(pt_filename).st_size if (sf_size - pt_size) / pt_size > 0.01: raise RuntimeError(f"""The file size different is more than 1%: - {sf_filename}: {sf_size} - {pt_filename}: {pt_size} """) # check if the tensors are the same reloaded = load_file(sf_filename) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f"The output tensors do not match for key {k}") # TODO: Move this to other place. def get_quant_config(model_config: ModelConfig, load_config: LoadConfig) -> QuantizationConfig: quant_cls = get_quantization_config(model_config.quantization) # GGUF doesn't have config file if model_config.quantization == "gguf": return quant_cls.from_config({}) # Read the quantization config from the HF model config, if available. hf_quant_config = getattr(model_config.hf_config, "quantization_config", None) if hf_quant_config is None: # compressed-tensors uses a compressions_config hf_quant_config = getattr(model_config.hf_config, "compression_config", None) if hf_quant_config is not None: return quant_cls.from_config(hf_quant_config) # In case of bitsandbytes/QLoRA, get quant config from the adapter model. if model_config.quantization == "bitsandbytes": if (not load_config.model_loader_extra_config or "qlora_adapter_name_or_path" not in load_config.model_loader_extra_config): return quant_cls.from_config({"adapter_name_or_path": ""}) model_name_or_path = load_config.model_loader_extra_config[ "qlora_adapter_name_or_path"] else: model_name_or_path = model_config.model is_local = os.path.isdir(model_name_or_path) if not is_local: # Download the config files. with get_lock(model_name_or_path, load_config.download_dir): hf_folder = snapshot_download( model_name_or_path, revision=model_config.revision, allow_patterns="*.json", cache_dir=load_config.download_dir, local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE, tqdm_class=DisabledTqdm, ) else: hf_folder = model_name_or_path possible_config_filenames = quant_cls.get_config_filenames() # If the quantization config is not found, use the default config. if not possible_config_filenames: return quant_cls() config_files = glob.glob(os.path.join(hf_folder, "*.json")) quant_config_files = [ f for f in config_files if any( f.endswith(x) for x in possible_config_filenames) ] if len(quant_config_files) == 0: raise ValueError( f"Cannot find the config file for {model_config.quantization}") if len(quant_config_files) > 1: raise ValueError( f"Found multiple config files for {model_config.quantization}: " f"{quant_config_files}") quant_config_file = quant_config_files[0] with open(quant_config_file, "r") as f: config = json.load(f) if model_config.quantization == "bitsandbytes": config["adapter_name_or_path"] = model_name_or_path return quant_cls.from_config(config) def download_weights_from_hf( model_name_or_path: str, cache_dir: Optional[str], allow_patterns: List[str], revision: Optional[str] = None, ignore_patterns: Optional[Union[str, List[str]]] = None, ) -> str: """Download model weights from Hugging Face Hub. Args: model_name_or_path (str): The model name or path. cache_dir (Optional[str]): The cache directory to store the model weights. If None, will use HF defaults. allow_patterns (List[str]): The allowed patterns for the weight files. Files matched by any of the patterns will be downloaded. revision (Optional[str]): The revision of the model. ignore_patterns (Optional[Union[str, List[str]]]): The patterns to filter out the weight files. Files matched by any of the patterns will be ignored. Returns: str: The path to the downloaded model weights. """ if not huggingface_hub.constants.HF_HUB_OFFLINE: # Before we download we look at that is available: fs = HfFileSystem() file_list = fs.ls(model_name_or_path, detail=False, revision=revision) # depending on what is available we download different things for pattern in allow_patterns: matching = fnmatch.filter(file_list, pattern) if len(matching) > 0: allow_patterns = [pattern] break rank = get_tensor_model_parallel_rank() if rank == 0: logger.info(f"Using model weights format {allow_patterns}") # Use file lock to prevent multiple processes from # downloading the same model weights at the same time. with get_lock(model_name_or_path, cache_dir): hf_folder = snapshot_download( model_name_or_path, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, cache_dir=cache_dir, tqdm_class=DisabledTqdm, revision=revision, local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE, ) return hf_folder def download_safetensors_index_file_from_hf( model_name_or_path: str, cache_dir: Optional[str], revision: Optional[str] = None, ) -> None: """Download hf safetensors index file from Hugging Face Hub. Args: model_name_or_path (str): The model name or path. cache_dir (Optional[str]): The cache directory to store the model weights. If None, will use HF defaults. revision (Optional[str]): The revision of the model. """ # Use file lock to prevent multiple processes from # downloading the same model weights at the same time. with get_lock(model_name_or_path, cache_dir): try: # Download the safetensors index file. hf_hub_download( repo_id=model_name_or_path, filename=SAFE_WEIGHTS_INDEX_NAME, cache_dir=cache_dir, revision=revision, local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE, ) # If file not found on remote or locally, we should not fail since # only some models will have SAFE_WEIGHTS_INDEX_NAME. except huggingface_hub.utils.EntryNotFoundError: logger.info(f"No {SAFE_WEIGHTS_INDEX_NAME} found in remote.") except huggingface_hub.utils.LocalEntryNotFoundError: logger.info(f"No {SAFE_WEIGHTS_INDEX_NAME} found in local cache.") # For models like Mistral-7B-v0.3, there are both sharded # safetensors files and a consolidated safetensors file. # Passing both of these to the weight loader functionality breaks. # So, we use the SAFE_WEIGHTS_INDEX_NAME to # look up which safetensors files should be used. def filter_duplicate_safetensors_files(hf_weights_files: List[str], hf_folder: str) -> List[str]: # model.safetensors.index.json is a mapping from keys in the # torch state_dict to safetensors file holding that weight. index_file_name = os.path.join(hf_folder, SAFE_WEIGHTS_INDEX_NAME) if not os.path.isfile(index_file_name): return hf_weights_files # Iterate through the weight_map (weight_name: safetensors files) # to identify weights that we should use. with open(index_file_name) as index_file: weight_map = json.load(index_file)["weight_map"] weight_files_in_index = set() for weight_name in weight_map: weight_files_in_index.add( os.path.join(hf_folder, weight_map[weight_name])) # Filter out any fields that are not found in the index file. hf_weights_files = [ f for f in hf_weights_files if f in weight_files_in_index ] return hf_weights_files def filter_files_not_needed_for_inference( hf_weights_files: List[str]) -> List[str]: """ Exclude files that are not needed for inference. See https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233 """ blacklist = [ "training_args.bin", "optimizer.bin", "optimizer.pt", "scheduler.pt", "scaler.pt", ] hf_weights_files = [ f for f in hf_weights_files if not any(f.endswith(x) for x in blacklist) ] return hf_weights_files def np_cache_weights_iterator( model_name_or_path: str, cache_dir: Optional[str], hf_folder: str, hf_weights_files: List[str] ) -> Generator[Tuple[str, torch.Tensor], None, None]: """Iterate over the weights in the model np files. Will dump the model weights to numpy files if they are not already dumped. """ enable_tqdm = False #not torch.distributed.is_initialized( #) or torch.distributed.get_rank() == 0 # Convert the model weights from torch tensors to numpy arrays for # faster loading. np_folder = os.path.join(hf_folder, "np") os.makedirs(np_folder, exist_ok=True) weight_names_file = os.path.join(np_folder, "weight_names.json") # Use file lock to prevent multiple processes from # dumping the same model weights to numpy at the same time. with get_lock(model_name_or_path, cache_dir): if not os.path.exists(weight_names_file): weight_names = [] for bin_file in tqdm( hf_weights_files, desc="Loading np_cache checkpoint shards", disable=not enable_tqdm, ): state = torch.load(bin_file, map_location="cpu") for name, param in state.items(): param_path = os.path.join(np_folder, name) with open(param_path, "wb") as f: np.save(f, param.cpu().detach().numpy()) weight_names.append(name) with open(weight_names_file, "w") as f: json.dump(weight_names, f) with open(weight_names_file, "r") as f: weight_names = json.load(f) for name in weight_names: param_path = os.path.join(np_folder, name) with open(param_path, "rb") as f: param = np.load(f) yield name, torch.from_numpy(param) def safetensors_weights_iterator( hf_weights_files: List[str] ) -> Generator[Tuple[str, torch.Tensor], None, None]: """Iterate over the weights in the model safetensor files.""" enable_tqdm = False #not torch.distributed.is_initialized( #) or torch.distributed.get_rank() == 0 for st_file in tqdm( hf_weights_files, desc="Loading safetensors checkpoint shards", disable=not enable_tqdm, ): with safe_open(st_file, framework="pt") as f: for name in f.keys(): # noqa: SIM118 param = f.get_tensor(name) yield name, param def pt_weights_iterator( hf_weights_files: List[str] ) -> Generator[Tuple[str, torch.Tensor], None, None]: """Iterate over the weights in the model bin/pt files.""" enable_tqdm = False #not torch.distributed.is_initialized( #) or torch.distributed.get_rank() == 0 for bin_file in tqdm( hf_weights_files, desc="Loading pt checkpoint shards", disable=not enable_tqdm, ): state = torch.load(bin_file, map_location="cpu") for name, param in state.items(): yield name, param del state torch.cuda.empty_cache() def get_gguf_extra_tensor_names( gguf_file: str, gguf_to_hf_name_map: Dict[str, str]) -> List[str]: reader = gguf.GGUFReader(gguf_file) expected_gguf_keys = set(gguf_to_hf_name_map.keys()) exact_gguf_keys = set([tensor.name for tensor in reader.tensors]) extra_keys = expected_gguf_keys - exact_gguf_keys return [gguf_to_hf_name_map[key] for key in extra_keys] def gguf_quant_weights_iterator( gguf_file: str, gguf_to_hf_name_map: Dict[str, str] ) -> Generator[Tuple[str, torch.Tensor], None, None]: """ Iterate over the quant weights in the model gguf files and convert them to torch tensors """ reader = gguf.GGUFReader(gguf_file) for tensor in reader.tensors: if tensor.name in gguf_to_hf_name_map: weight_type = tensor.tensor_type name = gguf_to_hf_name_map[tensor.name] if weight_type.name != "F32": weight_type_name = name.replace("weight", "qweight_type") weight_type = torch.tensor(weight_type) yield weight_type_name, weight_type for tensor in reader.tensors: if tensor.name in gguf_to_hf_name_map: weight = tensor.data weight_type = tensor.tensor_type name = gguf_to_hf_name_map[tensor.name] if weight_type.name != "F32": name = name.replace("weight", "qweight") param = torch.tensor(weight) yield name, param def kv_cache_scales_loader( filename: str, tp_rank: int, tp_size: int, num_hidden_layers: int, model_type: Optional[str]) -> Iterable[Tuple[int, float]]: """ A simple utility to read in KV cache scaling factors that have been previously serialized to disk. Used by the model to populate the appropriate KV cache scaling factors. The serialization should represent a dictionary whose keys are the TP ranks and values are another dictionary mapping layers to their KV cache scaling factors. Keep this function in sync with the output of examples/fp8/extract_scales.py """ try: with open(filename) as f: context = { "model_type": model_type, "num_hidden_layers": num_hidden_layers, "tp_rank": tp_rank, "tp_size": tp_size, } schema_dct = json.load(f) schema = QuantParamSchema.model_validate(schema_dct, context=context) layer_scales_map = schema.kv_cache.scaling_factor[tp_rank] return layer_scales_map.items() except FileNotFoundError: logger.error(f"File or directory '{filename}' not found.") except json.JSONDecodeError: logger.error(f"Error decoding JSON in file '{filename}'.") except Exception as e: logger.error(f"An error occurred while reading '{filename}': {e}") # This section is reached if and only if any of the excepts are hit # Return an empty iterable (list) => no KV cache scales are loaded # which ultimately defaults to 1.0 scales logger.warning("Defaulting to KV cache scaling factors = 1.0 " f"for all layers in TP rank {tp_rank} " "as an error occurred during loading.") return [] def convert_pyslice_to_tensor(x: Any) -> torch.Tensor: """convert PySafeSlice object from safetensors to torch.Tensor PySafeSlice object supports indexing, which is done before loading the actual tensor and can reduce the amount of memory being read into the memory. However, it does not support more advanced functionalities like `.view()` or `.t()`. Therefore, if we need to modify the loaded tensor with these more complicated operators, we need to convert to tensor first. """ if not isinstance(x, torch.Tensor): x = x[:] return x def default_weight_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None: """Default weight loader.""" try: if param.numel() == 1 and loaded_weight.numel() == 1: # Sometimes scalar values aren't considered tensors with shapes # so if both param and loaded_weight are a scalar, # "broadcast" instead of copy param.data.fill_(loaded_weight.item()) else: assert param.size() == loaded_weight.size(), ( f"Attempted to load weight ({loaded_weight.size()}) " f"into parameter ({param.size()})") param.data.copy_(loaded_weight) except Exception: # NOTE: This exception is added for the purpose of setting breakpoint to # debug weight loading issues. raise def row_parallel_weight_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None: """Load weights that are row-parallelized.""" tp_rank = get_tensor_model_parallel_rank() shard_dim = 0 if param.dim() != 1 else None if shard_dim is not None: shard_size = param.data.shape[shard_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size) return default_weight_loader(param, loaded_weight) def initialize_dummy_weights( model: torch.nn.Module, low: float = -1e-3, high: float = 1e-3, seed: int = 1234, ) -> None: """Initialize model weights with random values. The model weights must be randomly initialized for accurate performance measurements. Additionally, the model weights should not cause NaNs in the forward pass. We empirically found that initializing the weights with values between -1e-3 and 1e-3 works well for most models. We use per-parameter random seed, so that dummy weights are consistent, even if the model is partitioned across multiple devices. When the seed is fixed, the random values generated by this function only depends on the parameter's number of elements and its data type. """ for param in model.state_dict().values(): if torch.is_floating_point(param): if current_platform.is_tpu(): # XLA device does not support torch.Generator() param.uniform_(low, high) continue generator = torch.Generator(device=param.data.device) generator.manual_seed(seed) if torch.finfo(param.data.dtype).bits < 16: # uniform_ doesn't support < 16-bit datatypes (FP8) dtype = param.data.dtype tmp_param = param.data.to(torch.float16) tmp_param = tmp_param.uniform_(low, high, generator=generator).to(dtype) tmp_param = tmp_param.uniform_(low, high).to(dtype) param.data.copy_(tmp_param) else: param.uniform_(low, high, generator=generator) def maybe_remap_kv_scale_name(name: str, params_dict: dict) -> Optional[str]: """Remap the name of FP8 k/v_scale parameters. This function handles the remapping of FP8 k/v_scale parameter names. It detects if the given name ends with a suffix and attempts to remap it to the expected name format in the model. If the remapped name is not found in the params_dict, a warning is printed and None is returned. Args: name (str): The original loaded checkpoint parameter name. params_dict (dict): Dictionary containing the model's named parameters. Returns: str: The remapped parameter name if successful, or the original name if no remapping is needed. None: If the remapped name is not found in params_dict. """ if name.endswith(".kv_scale"): print_warning_once( "DEPRECATED. Found kv_scale in the checkpoint. " "This format is deprecated in favor of separate k_scale and " "v_scale tensors and will be removed in a future release. " "Functionally, we will remap kv_scale to k_scale and duplicate " "k_scale to v_scale") # NOTE: we remap the deprecated kv_scale to k_scale remapped_name = name.replace(".kv_scale", ".attn.k_scale") if remapped_name not in params_dict: print_warning_once( f"Found kv_scale in the checkpoint (e.g. {name}), " "but not found the expected name in the model " f"(e.g. {remapped_name}). kv_scale is " "not loaded.") return None return remapped_name possible_scale_names = [".k_scale", ".v_scale"] for scale_name in possible_scale_names: if name.endswith(scale_name): remapped_name = name.replace(scale_name, f".attn{scale_name}") if remapped_name not in params_dict: print_warning_once( f"Found {scale_name} in the checkpoint (e.g. {name}), " "but not found the expected name in the model " f"(e.g. {remapped_name}). {scale_name} is " "not loaded.") return None return remapped_name # If there were no matches, return the untouched param name return name