import weakref from typing import List, Optional, Set, Tuple import torch from aphrodite.common.sequence import (ExecuteModelRequest, SamplerOutput, SequenceGroupMetadata) from aphrodite.modeling import SamplingMetadata from aphrodite.spec_decode.interfaces import SpeculativeProposals from aphrodite.spec_decode.proposer_worker_base import NonLLMProposerWorkerBase from aphrodite.spec_decode.top1_proposer import Top1Proposer from aphrodite.task_handler.worker import Worker class MedusaWorker(NonLLMProposerWorkerBase, Worker): """Worker for Medusa. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Lazy initialization list. self._proposer: Top1Proposer def init_device(self): super().init_device() self._proposer = Top1Proposer( weakref.proxy(self), # type: ignore[arg-type] self.device, self.vocab_size, max_proposal_len=self.max_model_len, ) def set_include_gpu_probs_tensor(self): pass @torch.inference_mode() def sampler_output( self, execute_model_req: ExecuteModelRequest, sample_len: int, # Unused parameter. seq_ids_with_bonus_token_in_last_step: Set[int], ) -> Tuple[List[SamplerOutput], bool]: """Run the model forward pass to generate sample_len future tokens. Returns the list of sampler output, one per layer, along with indicator of whether torch tensor in sampler output need to be transposed in latter sampler_output_to_torch logic. For medusa worker, this indicator shall be False. """ self._raise_if_unsupported(execute_model_req) seq_group_metadata_list = execute_model_req.seq_group_metadata_list seq_lens, query_lens = self._prepare_input_tensors( seq_group_metadata_list) generators = self.model_runner.get_generators( execute_model_req.finished_requests_ids) sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens, query_lens, self.device, self.model_runner.pin_memory, generators) model_outputs = self.model_runner.model.generate_proposals( previous_hidden_states=execute_model_req.previous_hidden_states. hidden_states, sampling_metadata=sampling_metadata) return model_outputs, False def _prepare_input_tensors( self, seq_group_metadata_list: Optional[List[SequenceGroupMetadata]], ) -> Tuple[List[int], List[int]]: if not seq_group_metadata_list: return [], [] seq_lens: List[int] = [] query_lens: List[int] = [] for seq_group_metadata in seq_group_metadata_list: is_prompt = seq_group_metadata.is_prompt for seq_data in seq_group_metadata.seq_data.values(): seq_data_len = seq_data.get_len() if is_prompt: context_len = seq_data.get_num_computed_tokens() seq_len = min( seq_data_len, context_len + seq_group_metadata.token_chunk_size) seq_lens.append(seq_len) query_lens.append(seq_len - context_len) else: seq_lens.append(seq_data_len) query_lens.append(1) return seq_lens, query_lens def get_spec_proposals( self, execute_model_req: ExecuteModelRequest, seq_ids_with_bonus_token_in_last_step: Set[int], ) -> SpeculativeProposals: """Produce speculations given an input batch of sequences. The number of speculative tokens per sequence is determined by max_proposal_len. """ return self._proposer.get_spec_proposals( execute_model_req, seq_ids_with_bonus_token_in_last_step) def _raise_if_unsupported( self, execute_model_req: ExecuteModelRequest, ) -> None: """MedusaWorker does not yet implement support for cache swap operations or beam search. """ if any([ execute_model_req.blocks_to_swap_in, execute_model_req.blocks_to_swap_out, execute_model_req.blocks_to_copy ]): raise NotImplementedError( "MedusaWorker does not support cache operations") if any( len(seq_group_metadata.seq_data.keys()) != 1 for seq_group_metadata in execute_model_req.seq_group_metadata_list): raise NotImplementedError( "MedusaWorker does not support beam search.")