from typing import Any, Dict, List, Optional, Set, Tuple import torch from loguru import logger from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput from aphrodite.common.utils import (get_distributed_init_method, get_ip, get_open_port, make_async) from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase from aphrodite.lora.request import LoRARequest class TPUExecutor(ExecutorBase): uses_ray: bool = False def _init_executor(self) -> None: assert not self.scheduler_config.chunked_prefill_enabled, ( "Chunked prefill is not yet supported for TPU backend") assert not self.speculative_config, ( "Speculative decoding is not yet supported for TPU backend") if self.model_config.dtype in (torch.float16, torch.float32): logger.warning("The TPU backend currently does not support " f"{self.model_config.dtype}. " "Using bfloat16 instead.") self.model_config.dtype = torch.bfloat16 # Instantiate the worker and load the model to the device. self.driver_worker = self._create_worker() self.driver_worker.init_device() self.driver_worker.load_model() def _get_worker_kwargs( self, local_rank: int = 0, rank: int = 0, distributed_init_method: Optional[str] = None, ) -> Dict[str, Any]: """Return worker init args for a given rank.""" if distributed_init_method is None: distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) return dict( model_config=self.model_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, load_config=self.load_config, local_rank=local_rank, rank=rank, distributed_init_method=distributed_init_method, multimodal_config=self.multimodal_config, is_driver_worker=rank == 0, ) def _create_worker( self, local_rank: int = 0, rank: int = 0, distributed_init_method: Optional[str] = None, ): from aphrodite.task_handler.tpu_worker import TPUWorker worker = TPUWorker(**self._get_worker_kwargs(local_rank, rank, distributed_init_method)) return worker def initialize_cache( self, num_gpu_blocks: int, num_cpu_blocks: int, ) -> None: """Initialize the KV cache by invoking the underlying worker.""" # NOTE: This is logged in the executor because there can be >1 worker # with other executors. We could log in the engine level, but work # remains to abstract away the device for non-GPU configurations. logger.info(f"# TPU blocks: {num_gpu_blocks}, " f"# CPU blocks: {num_cpu_blocks}") logger.info( f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501 ) self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks) def determine_num_available_blocks(self) -> Tuple[int, int]: """Determine the number of available KV blocks by invoking the underlying worker. """ return self.driver_worker.determine_num_available_blocks() def execute_model( self, execute_model_req: ExecuteModelRequest, ) -> List[SamplerOutput]: output = self.driver_worker.execute_model(execute_model_req) return output def add_lora(self, lora_request: LoRARequest) -> bool: raise NotImplementedError( "LoRA is currently not supported by the TPU backend.") def remove_lora(self, lora_id: int) -> bool: raise NotImplementedError( "LoRA is currently not supported by the TPU backend.") def pin_lora(self, lora_id: int) -> bool: raise NotImplementedError( "LoRA is currently not supported by the TPU backend.") def list_loras(self) -> Set[int]: raise NotImplementedError( "LoRA is currently not supported by the TPU backend.") def add_prompt_adapter(self, prompt_adapter_request) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the TPU backend.") def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the TPU backend.") def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the TPU backend.") def list_prompt_adapters(self) -> Set[int]: raise NotImplementedError( "Soft prompt is currently not supported by the TPU backend.") def check_health(self) -> None: # TPUExecutor will always be healthy as long as it's running. return class TPUExecutorAsync(TPUExecutor, ExecutorAsyncBase): async def execute_model_async( self, sexecute_model_req: ExecuteModelRequest, ) -> SamplerOutput: output = await make_async(self.driver_worker.execute_model )(sexecute_model_req) return output