import asyncio import os from collections import defaultdict from itertools import islice, repeat from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple from loguru import logger from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput from aphrodite.common.utils import (_run_task_with_lock, get_aphrodite_instance_id, get_distributed_init_method, get_ip, get_open_port, make_async) from aphrodite.executor.distributed_gpu_executor import ( # yapf: disable DistributedGPUExecutor, DistributedGPUExecutorAsync) from aphrodite.executor.ray_utils import RayWorkerWrapper, ray if ray is not None: from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy if TYPE_CHECKING: from ray.util.placement_group import PlacementGroup # If the env var is set, it uses the Ray's compiled DAG API # which optimizes the control plane overhead. # Run Aphrodite with APHRODITE_USE_RAY_COMPILED_DAG=1 to enable it. APHRODITE_USE_RAY_COMPILED_DAG = bool( os.getenv("APHRODITE_USE_RAY_COMPILED_DAG", 0)) APHRODITE_TRACE_FUNCTION = int(os.getenv("APHRODITE_TRACE_FUNCTION", 0)) APHRODITE_USE_RAY_SPMD_WORKER = bool( os.getenv("APHRODITE_USE_RAY_SPMD_WORKER", 0)) APHRODITE_USE_RAY_COMPILED_DAG_NCCL_CHANNEL = bool( int(os.getenv("APHRODITE_USE_RAY_COMPILED_DAG_NCCL_CHANNEL", 1))) class RayGPUExecutor(DistributedGPUExecutor): uses_ray: bool = True def _init_executor(self) -> None: self.forward_dag: Optional["ray.dag.CompiledDAG"] = None # If the env var is set, it uses the Ray's compiled DAG API # which optimizes the control plane overhead. # Run Aphrodite with APHRODITE_USE_RAY_COMPILED_DAG=1 to enable it. # Currently, this requires USE_RAY_SPMD_WORKER=True. self.use_ray_compiled_dag = APHRODITE_USE_RAY_COMPILED_DAG # If the env var is set, then we do not distinguish between the # "driver worker" vs other workers. Also, the rank 0 worker will # be executed in a remote Ray worker. Currently this requires # USE_RAY_COMPILED_DAG=True. self.use_ray_spmd_worker = APHRODITE_USE_RAY_SPMD_WORKER if self.use_ray_compiled_dag: assert self.use_ray_spmd_worker, ( "APHRODITE_USE_RAY_COMPILED_DAG=1 requires " "APHRODITE_USE_RAY_SPMD_WORKER=1") if self.use_ray_spmd_worker: # TODO: Support SPMD worker for non-DAG Ray executor. assert self.use_ray_compiled_dag, ( "APHRODITE_USE_RAY_SPMD_WORKER=1 requires " "APHRODITE_USE_RAY_COMPILED_DAG=1") assert self.uses_ray placement_group = self.parallel_config.placement_group # Disable Ray usage stats collection. ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0") if ray_usage != "1": os.environ["RAY_USAGE_STATS_ENABLED"] = "0" # Create the parallel GPU workers. self._init_workers_ray(placement_group) def _configure_ray_workers_use_nsight(self, ray_remote_kwargs) -> Dict[str, Any]: # If nsight profiling is enabled, we need to set the profiling # configuration for the ray workers as runtime env. runtime_env = ray_remote_kwargs.setdefault("runtime_env", {}) runtime_env.update({ "nsight": { "t": "cuda,cudnn,cublas", "o": "'worker_process_%p'", "cuda-graph-trace": "node", } }) return ray_remote_kwargs def _get_worker_wrapper_args(self) -> Dict[str, Any]: if self.speculative_config is not None: worker_module_name = "aphrodite.spec_decode.spec_decode_worker" worker_class_name = "create_spec_worker" else: worker_module_name = "aphrodite.task_handler.worker" worker_class_name = "Worker" return dict( worker_module_name=worker_module_name, worker_class_name=worker_class_name, trust_remote_code=self.model_config.trust_remote_code, ) def _init_workers_ray(self, placement_group: "PlacementGroup", **ray_remote_kwargs): if (self.parallel_config.tensor_parallel_size == 1 and self.parallel_config.pipeline_parallel_size == 1): # For single GPU case, we use a ray worker with constrained memory. num_gpus = self.cache_config.gpu_memory_utilization else: # Otherwise, the ray workers are allocated with a full GPU. num_gpus = 1 # The driver dummy worker does not actually use any resources. # It holds the resource for the driver worker. self.driver_dummy_worker: Optional[RayWorkerWrapper] = None # The remaining workers are the actual ray actors. self.workers: List[RayWorkerWrapper] = [] # Used in ray compiled DAG: indexed first by PP rank, # and then TP rank. In other words, the inner list is # the TP group of workers for a PP rank. self.pp_tp_workers: List[List[RayWorkerWrapper]] = [] if self.parallel_config.ray_workers_use_nsight: ray_remote_kwargs = self._configure_ray_workers_use_nsight( ray_remote_kwargs) logger.info(f"use_ray_spmd_worker: {self.use_ray_spmd_worker}") # Create the workers. driver_ip = get_ip() logger.info(f"driver_ip: {driver_ip}") worker_wrapper_kwargs = self._get_worker_wrapper_args() for bundle_id, bundle in enumerate(placement_group.bundle_specs): if not bundle.get("GPU", 0): continue scheduling_strategy = PlacementGroupSchedulingStrategy( placement_group=placement_group, placement_group_capture_child_tasks=True, placement_group_bundle_index=bundle_id, ) worker = ray.remote( num_cpus=0, num_gpus=num_gpus, scheduling_strategy=scheduling_strategy, **ray_remote_kwargs, )(RayWorkerWrapper).remote(**worker_wrapper_kwargs) if self.use_ray_spmd_worker: self.workers.append(worker) else: worker_ip = ray.get(worker.get_node_ip.remote()) if worker_ip == driver_ip and self.driver_dummy_worker is None: # If the worker is on the same node as the driver, we use it # as the resource holder for the driver process. self.driver_dummy_worker = worker self.driver_worker = RayWorkerWrapper( **worker_wrapper_kwargs) else: # Else, added to the list of workers. self.workers.append(worker) logger.debug(f"workers: {self.workers}") logger.debug(f"driver_dummy_worker: {self.driver_dummy_worker}") if not self.use_ray_spmd_worker and self.driver_dummy_worker is None: raise ValueError( "Ray does not allocate any GPUs on the driver node. Consider " "adjusting the Ray placement group or running the driver on a " "GPU node.") worker_ips = [ ray.get(worker.get_node_ip.remote()) # type: ignore[attr-defined] for worker in self.workers ] ip_counts: Dict[str, int] = {} for ip in worker_ips: ip_counts[ip] = ip_counts.get(ip, 0) + 1 def sort_by_driver_then_worker_ip(worker): """ Sort the workers based on 3 properties: 1. If the worker is on the same node as the driver (vllm engine), it should be placed first. 2. Then, if the worker is on a node with fewer workers, it should be placed first. 3. Finally, if the work is on a node with smaller IP address, it should be placed first. """ ip = ray.get(worker.get_node_ip.remote()) return (ip != driver_ip, ip_counts[ip], ip) # After sorting, the workers on the same node will be # close to each other, and the workers on the driver # node will be placed first. self.workers = sorted(self.workers, key=sort_by_driver_then_worker_ip) # Get the set of GPU IDs used on each node. worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", use_dummy_driver=True) node_workers = defaultdict(list) # node id -> list of worker ranks node_gpus = defaultdict(list) # node id -> list of gpu ids for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids): node_workers[node_id].append(i) # `gpu_ids` can be a list of strings or integers. # convert them to integers for consistency. # NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs), # string sorting is not sufficient. gpu_ids = [int(x) for x in gpu_ids] node_gpus[node_id].extend(gpu_ids) for node_id, gpu_ids in node_gpus.items(): node_gpus[node_id] = sorted(gpu_ids) APHRODITE_INSTANCE_ID = get_aphrodite_instance_id() # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ "CUDA_VISIBLE_DEVICES": ",".join(map(str, node_gpus[node_id])), "APHRODITE_INSTANCE_ID": APHRODITE_INSTANCE_ID, "APHRODITE_TRACE_FUNCTION": str(APHRODITE_TRACE_FUNCTION), }, ) for (node_id, _) in worker_node_and_gpu_ids] self._run_workers("update_environment_variables", all_args=all_args_to_update_environment_variables) if len(node_gpus) == 1: # in single node case, we don't need to get the IP address. # the loopback address is sufficient # NOTE: a node may have several IP addresses, one for each # network interface. `get_ip()` might return any of them, # while they might not work for communication inside the node # if the network setup is complicated. Using the loopback address # solves this issue, as it always works for communication inside # the node. driver_ip = "127.0.0.1" distributed_init_method = get_distributed_init_method( driver_ip, get_open_port()) # Initialize the actual workers inside worker wrapper. init_worker_all_kwargs = [ self._get_worker_kwargs( local_rank=node_workers[node_id].index(rank), rank=rank, distributed_init_method=distributed_init_method, ) for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids) ] self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs) self._run_workers("init_device") self._run_workers("load_model", max_concurrent_workers=self.parallel_config. max_parallel_loading_workers) if self.use_ray_spmd_worker: for pp_rank in range(self.parallel_config.pipeline_parallel_size): self.pp_tp_workers.append([]) for tp_rank in range( self.parallel_config.tensor_parallel_size): # PP=2, TP=4 # pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]] rank = (pp_rank * self.parallel_config.tensor_parallel_size ) + tp_rank assert len(self.pp_tp_workers[pp_rank]) == tp_rank assert pp_rank < len(self.pp_tp_workers) self.pp_tp_workers[pp_rank].append(self.workers[rank]) # This is the list of workers that are rank 0 of each TP group EXCEPT # global rank 0. These are the workers that will broadcast to the # rest of the workers. self.tp_driver_workers: List[RayWorkerWrapper] = [] # This is the list of workers that are not drivers and not the first # worker in a TP group. These are the workers that will be # broadcasted to. self.non_driver_workers: List[RayWorkerWrapper] = [] # Enforce rank order for correct rank to return final output. for index, worker in enumerate(self.workers): # The driver worker is rank 0 and not in self.workers. rank = index + 1 if rank % self.parallel_config.tensor_parallel_size == 0: self.tp_driver_workers.append(worker) else: self.non_driver_workers.append(worker) def _driver_execute_model( self, execute_model_req: Optional[ExecuteModelRequest] ) -> Optional[List[SamplerOutput]]: """Run execute_model in the driver worker. Passing None will cause the driver to stop the model execution loop running in each of the remote workers. """ assert not self.use_ray_spmd_worker, ( "driver_worker does not exist for APHRODITE_USE_RAY_SPMD_WORKER=1") return self.driver_worker.execute_method("execute_model", execute_model_req) def execute_model( self, execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]: if not self.use_ray_spmd_worker: return super().execute_model(execute_model_req) if self.forward_dag is None: self.forward_dag = self._compiled_ray_dag(enable_asyncio=False) outputs = ray.get(self.forward_dag.execute(execute_model_req)) return outputs[0] def _run_workers( self, method: str, *args, async_run_tensor_parallel_workers_only: bool = False, all_args: Optional[List[Tuple[Any, ...]]] = None, all_kwargs: Optional[List[Dict[str, Any]]] = None, use_dummy_driver: bool = False, max_concurrent_workers: Optional[int] = None, **kwargs, ) -> Any: """Runs the given method on all workers. Can be used in the following ways: Args: - async_run_tensor_parallel_workers_only: If True the method will be run only in the remote TP workers, not the driver worker. It will also be run asynchronously and return a list of futures rather than blocking on the results. - args/kwargs: All workers share the same args/kwargs - all_args/all_kwargs: args/kwargs for each worker are specified individually """ if self.use_ray_spmd_worker: assert not async_run_tensor_parallel_workers_only, ( "async_run_tensor_parallel_workers_only is not supported for " "spmd mode.") if max_concurrent_workers: raise NotImplementedError( "max_concurrent_workers is not supported yet.") count = len(self.workers) if not \ async_run_tensor_parallel_workers_only \ else len(self.non_driver_workers) # If using SPMD worker, all workers are the same, so we should execute # the args on all workers. Otherwise, we skip the first worker's args # because those args will go to the driver worker. first_worker_args_index: int = 0 if self.use_ray_spmd_worker else 1 all_worker_args = repeat(args, count) if all_args is None \ else islice(all_args, first_worker_args_index, None) all_worker_kwargs = repeat(kwargs, count) if all_kwargs is None \ else islice(all_kwargs, first_worker_args_index, None) # Start the ray workers first. ray_workers = self.workers if async_run_tensor_parallel_workers_only: ray_workers = self.non_driver_workers ray_worker_outputs = [ worker.execute_method.remote(method, *worker_args, **worker_kwargs) for (worker, worker_args, worker_kwargs ) in zip(ray_workers, all_worker_args, all_worker_kwargs) ] if async_run_tensor_parallel_workers_only: # Just return futures return ray_worker_outputs driver_worker_output = [] # In SPMD mode, the driver worker is the same as any other worker, # so we only explicitly execute on the driver worker if using a # non-SPMD worker class. if not self.use_ray_spmd_worker: driver_args = args if all_args is None else all_args[0] driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0] # Start the driver worker after all the ray workers. if not use_dummy_driver: driver_worker_output = [ self.driver_worker.execute_method(method, *driver_args, **driver_kwargs) ] else: assert self.driver_dummy_worker is not None driver_worker_output = [ ray.get( self.driver_dummy_worker.execute_method.remote( method, *driver_args, **driver_kwargs)) ] # Get the results of the ray workers. if self.workers: ray_worker_outputs = ray.get(ray_worker_outputs) return driver_worker_output + ray_worker_outputs def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None: """Wait for futures returned from _run_workers() with async_run_remote_workers_only to complete.""" ray.get(parallel_worker_tasks) def _compiled_ray_dag(self, enable_asyncio: bool): import pkg_resources from packaging import version required_version = version.parse("2.32") current_version = version.parse( pkg_resources.get_distribution("ray").version) if current_version < required_version: raise ValueError(f"Ray version {required_version} or greater is " f"required, but found {current_version}") assert self.parallel_config.use_ray from ray.dag import InputNode, MultiOutputNode from ray.experimental.channel.torch_tensor_type import TorchTensorType logger.info(f"APHRODITE_USE_RAY_COMPILED_DAG_NCCL_CHANNEL = " f"{APHRODITE_USE_RAY_COMPILED_DAG_NCCL_CHANNEL}") with InputNode() as input_data: # Example DAG: PP=2, TP=4 # (ExecuteModelReq, None) -> 0 -> (ExecuteModelReq, IntermediateOutput) -> 4 -> SamplerOutput # noqa: E501 # -> 1 -> (ExecuteModelReq, IntermediateOutput) -> 5 -> SamplerOutput # noqa: E501 # -> 2 -> (ExecuteModelReq, IntermediateOutput) -> 6 -> SamplerOutput # noqa: E501 # -> 3 -> (ExecuteModelReq, IntermediateOutput) -> 7 -> SamplerOutput # noqa: E501 # All workers in the first TP group will take in the # ExecuteModelRequest as input. outputs = [input_data for _ in self.pp_tp_workers[0]] for pp_rank, tp_group in enumerate(self.pp_tp_workers): # Each PP worker takes in the output of the previous PP worker, # and the TP group executes in SPMD fashion. outputs = [ worker.execute_model_spmd. bind( # type: ignore[attr-defined] outputs[i]) for i, worker in enumerate(tp_group) ] last_pp_rank = len(self.pp_tp_workers) - 1 if pp_rank < last_pp_rank: # Specify how intermediate tensors should be passed # between pp stages, no need to specify for the last # pp stage. transport = "nccl" \ if APHRODITE_USE_RAY_COMPILED_DAG_NCCL_CHANNEL \ else "auto" outputs = [ output.with_type_hint( TorchTensorType(transport=transport)) for output in outputs ] forward_dag = MultiOutputNode(outputs) return forward_dag.experimental_compile(enable_asyncio=enable_asyncio) def __del__(self): if self.forward_dag is not None: self.forward_dag.teardown() import ray for worker in self.workers: ray.kill(worker) class RayGPUExecutorAsync(RayGPUExecutor, DistributedGPUExecutorAsync): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pp_locks: Optional[List[asyncio.Lock]] = None self.use_ray_spmd_worker = APHRODITE_USE_RAY_SPMD_WORKER if not self.use_ray_compiled_dag: self.driver_exec_method = make_async( self.driver_worker.execute_method) async def execute_model_async( self, execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]: if not self.use_ray_spmd_worker: return await super().execute_model_async(execute_model_req) if self.forward_dag is None: self.forward_dag = self._compiled_ray_dag(enable_asyncio=True) dag_future = await self.forward_dag.execute_async(execute_model_req) outputs = await dag_future return outputs[0] async def _driver_execute_model_async( self, execute_model_req: Optional[ExecuteModelRequest] = None ) -> List[SamplerOutput]: assert not self.use_ray_spmd_worker, ( "driver_worker does not exist for APHRODITE_USE_RAY_SPMD_WORKER=1") if not self.tp_driver_workers: return await self.driver_exec_method("execute_model", execute_model_req) if self.pp_locks is None: # This locks each pipeline parallel stage so multiple virtual # engines can't execute on the same stage at the same time # We create the locks here to avoid creating them in the constructor # which uses a different asyncio loop. self.pp_locks = [ asyncio.Lock() for _ in range(self.parallel_config.pipeline_parallel_size) ] tasks = [ asyncio.create_task( _run_task_with_lock(self.driver_exec_method, self.pp_locks[0], "execute_model", execute_model_req)) ] for pp_rank, driver_worker in enumerate(self.tp_driver_workers, start=1): tasks.append( asyncio.create_task( _run_task_with_lock(driver_worker.execute_method.remote, self.pp_locks[pp_rank], "execute_model", execute_model_req))) results = await asyncio.gather(*tasks) # Only the last PP stage has the final results. return results[-1] async def _start_worker_execution_loop(self): assert not self.use_ray_spmd_worker, ( "worker loop is disabled for APHRODITE_USE_RAY_SPMD_WORKER=1") coros = [ worker.execute_method.remote("start_worker_execution_loop") for worker in self.non_driver_workers ] return await asyncio.gather(*coros) def __del__(self): if self.forward_dag is not None: self.forward_dag.teardown() import ray for worker in self.workers: ray.kill(worker)