import codecs import tempfile from dataclasses import dataclass from functools import lru_cache from pathlib import Path from typing import (Any, Awaitable, Iterable, List, Optional, Tuple, Union, cast, final) import requests from loguru import logger # yapf conflicts with isort for this block # yapf: disable from openai.types.chat import ChatCompletionContentPartImageParam from openai.types.chat import ( ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam) from openai.types.chat import ChatCompletionContentPartTextParam from openai.types.chat import ( ChatCompletionMessageParam as OpenAIChatCompletionMessageParam) # yapf: enable # pydantic needs the TypedDict from typing_extensions from pydantic import ConfigDict from transformers import PreTrainedTokenizer from typing_extensions import Required, TypedDict from aphrodite.common.config import ModelConfig from aphrodite.multimodal import MultiModalDataDict from aphrodite.multimodal.utils import async_get_and_parse_image from aphrodite.transformers_utils.tokenizer import AnyTokenizer class CustomChatCompletionContentPartParam(TypedDict, total=False): __pydantic_config__ = ConfigDict(extra="allow") # type: ignore type: Required[str] """The type of the content part.""" ChatCompletionContentPartParam = Union[OpenAIChatCompletionContentPartParam, CustomChatCompletionContentPartParam] class CustomChatCompletionMessageParam(TypedDict, total=False): """Enables custom roles in the Chat Completion API.""" role: Required[str] """The role of the message's author.""" content: Union[str, List[ChatCompletionContentPartParam]] """The contents of the message.""" name: str """An optional name for the participant. Provides the model information to differentiate between participants of the same role. """ ChatCompletionMessageParam = Union[OpenAIChatCompletionMessageParam, CustomChatCompletionMessageParam] @final # So that it should be compatible with Dict[str, str] class ConversationMessage(TypedDict): role: str content: str @dataclass(frozen=True) class ChatMessageParseResult: messages: List[ConversationMessage] mm_futures: List[Awaitable[MultiModalDataDict]] def load_chat_template( chat_template: Optional[Union[Path, str]]) -> Optional[str]: if chat_template is None: return None try: chat_template_str = str(chat_template) if chat_template_str.startswith(('http')): response = requests.get(chat_template_str) temp = tempfile.NamedTemporaryFile(delete=False) temp.write(response.content) temp.close() chat_template = temp.name with open(chat_template, "r") as f: resolved_chat_template = f.read() except OSError as e: if isinstance(chat_template, Path): raise JINJA_CHARS = "{}\n" if not any(c in chat_template for c in JINJA_CHARS): msg = (f"The supplied chat template ({chat_template}) " "looks like a file path, but it failed to be " f"opened. Reason: {e}") raise ValueError(msg) from e # If opening a file fails, set chat template to be args to # ensure we decode so our escape are interpreted correctly resolved_chat_template = codecs.decode(chat_template, "unicode_escape") logger.info(f"Using supplied chat template:\n{resolved_chat_template}") return resolved_chat_template @lru_cache(maxsize=None) def _image_token_str(model_config: ModelConfig, tokenizer: PreTrainedTokenizer) -> Optional[str]: # TODO: Let user specify how to insert image tokens into prompt # (similar to chat template) model_type = model_config.hf_config.model_type if model_type == "phi3_v": # Workaround since this token is not defined in the tokenizer return "<|image_1|>" if model_type == "minicpmv": return "(./)" if model_type in ("blip-2", "chatglm", "fuyu", "paligemma"): # These models do not use image tokens in the prompt return None if model_type.startswith("llava"): return tokenizer.decode(model_config.hf_config.image_token_index) if model_type in ("chameleon", "internvl_chat"): return "" raise TypeError(f"Unknown model type: {model_type}") # TODO: Let user specify how to insert image tokens into prompt # (similar to chat template) def _get_full_image_text_prompt(image_token_str: str, text_prompt: str) -> str: """Combine image and text prompts for vision language model""" # NOTE: For now we assume all model architectures use the same # image + text prompt format. This may change in the future. return f"{image_token_str}\n{text_prompt}" def _parse_chat_message_content_parts( role: str, parts: Iterable[ChatCompletionContentPartParam], model_config: ModelConfig, tokenizer: PreTrainedTokenizer, ) -> ChatMessageParseResult: texts: List[str] = [] mm_futures: List[Awaitable[MultiModalDataDict]] = [] for part in parts: part_type = part["type"] if part_type == "text": text = cast(ChatCompletionContentPartTextParam, part)["text"] texts.append(text) elif part_type == "image_url": if len(mm_futures) > 0: raise NotImplementedError( "Multiple 'image_url' input is currently not supported.") image_url = cast(ChatCompletionContentPartImageParam, part)["image_url"] if image_url.get("detail", "auto") != "auto": logger.warning( "'image_url.detail' is currently not supported and " "will be ignored.") image_future = async_get_and_parse_image(image_url["url"]) mm_futures.append(image_future) else: raise NotImplementedError(f"Unknown part type: {part_type}") text_prompt = "\n".join(texts) if mm_futures: image_token_str = _image_token_str(model_config, tokenizer) if image_token_str is not None: if image_token_str in text_prompt: logger.warning( "Detected image token string in the text prompt. " "Skipping prompt formatting.") else: text_prompt = _get_full_image_text_prompt( image_token_str=image_token_str, text_prompt=text_prompt, ) messages = [ConversationMessage(role=role, content=text_prompt)] return ChatMessageParseResult(messages=messages, mm_futures=mm_futures) def _parse_chat_message_content( message: ChatCompletionMessageParam, model_config: ModelConfig, tokenizer: PreTrainedTokenizer, ) -> ChatMessageParseResult: role = message["role"] content = message.get("content") if content is None: return ChatMessageParseResult(messages=[], mm_futures=[]) if isinstance(content, str): messages = [ConversationMessage(role=role, content=content)] return ChatMessageParseResult(messages=messages, mm_futures=[]) return _parse_chat_message_content_parts(role, content, model_config, tokenizer) def parse_chat_messages( messages: List[ChatCompletionMessageParam], model_config: ModelConfig, tokenizer: PreTrainedTokenizer, ) -> Tuple[List[ConversationMessage], List[Awaitable[MultiModalDataDict]]]: conversation: List[ConversationMessage] = [] mm_futures: List[Awaitable[MultiModalDataDict]] = [] for msg in messages: parse_result = _parse_chat_message_content(msg, model_config, tokenizer) conversation.extend(parse_result.messages) mm_futures.extend(parse_result.mm_futures) return conversation, mm_futures def apply_chat_template( tokenizer: AnyTokenizer, conversation: List[ConversationMessage], chat_template: Optional[str], *, tokenize: bool = False, # Different from HF's default **kwargs: Any, ) -> str: if chat_template is None and tokenizer.chat_template is None: raise ValueError( "As of transformers v4.44, default chat template is no longer " "allowed, so you must provide a chat template if the tokenizer " "does not define one.") prompt = tokenizer.apply_chat_template( conversation=conversation, chat_template=chat_template, tokenize=tokenize, **kwargs, ) assert isinstance(prompt, str) return prompt