from abc import ABC, abstractmethod import torch from typing import Dict, List class LogitsProcessor(ABC): @abstractmethod def __call__(self, logits: torch.Tensor, output_tokens: List[List[int]]) -> None: """Logits are edited in-place""" pass class BiasLogitsProcessor(LogitsProcessor): """This is to enable logit_bias in the OpenAI server. biases is a dict where each value is -100 to 100 according to the OpenAI API docs. Args: biases: Dict of values from -100 to 100 to scale the probability of a token being generated. Each key of the dict corresponds to the the token id. """ def __init__(self, biases: Dict[int, float]): self.biases = biases if not biases: return self.keys = torch.tensor(list(self.biases.keys()), dtype=torch.long) self.values = torch.tensor(list(self.biases.values()), dtype=torch.long) def __call__(self, logits, output_tokens): if not self.biases: return values = self.values.to(logits.device) keys = self.keys.to(logits.device) update_factors = torch.where(values >= 0, 1 + (values / 100), 1 / (1 - (values / 100))) logits[0, keys] *= update_factors class BanEOSUntil(LogitsProcessor): """Bans the EOS token until a certain condition is met. In this case, 'number of output tokens'. With this condition, both 'min_tokens' and 'ignore_eos' parameters can be handled gracefully.""" def __init__(self, min_tokens: int, eos_token_id: int): self._min_tokens = min_tokens self._eos_token_id = eos_token_id def __call__(self, logits, output_tokens): for i in range(len(output_tokens)): if len(output_tokens[i]) < self._min_tokens: logits[i][self._eos_token_id] = -float("inf")