--- outline: deep --- # Installation with ROCm Aphrodite supports AMD GPUs using ROCm 6.1. ## Requirements - Linux (or WSL on Windows) - Python 3.8 - 3.11 - GPU: MI200 (gfx90a), MI300 (gfx942), RX 7900 Series (gfx1100) - ROCm 6.1 ## Installation with Docker You can build Aphrodite Engine from source. First, build a docker image from the provided `Dockerfile.rocm`, then launch a container from the image. To build Aphrodite on high-end datacenter GPUs (e.g. MI300X), run this: ```sh DOCKER_BUILDKIT=1 docker build -f Dockerfile.rocm -t aphrodite-rocm . ``` To build Aphrodite on NAVI GPUs (e.g. RTX 7900 XTX), run this: ```sh DOCKER_BUILDKIT=1 docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm aphrodite-rocm . ``` Then run your image: ```sh docker run -it \ --network=host \ --group-add=video \ --ipc=host \ --cap-add=SYS_PTRACE \ --security-opt seccomp=unconfined \ --device /dev/kfd \ --device /dev/dri \ -v ~/.cache/huggingface/root/.cache/huggingface \ aphrodite-rocm \ bash ``` ## Installation from source You can also build Aphrodite from source, but it's more complicated, so we recommend Docker. You will need the following installed beforehand: - [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/) - [PyTorch](https://pytorch.org/get-started/locally/) - [hipBLAS](https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html#install) Then install [Triton for ROCm](http://github.com/ROCm/triton). You may also Install [CK Flash Attention](https://github.com/ROCm/flash-attention) if needed. :::warning You may need to downgrade `ninja` version to 1.10. ::: Finally, build Aphrodite: ```sh git clone https://github.com/PygmalionAI/aphrodite-engine.git cd aphrodite-engine pip install -U -r requirements-rocm.txt python setup.py develop # pip install -e . won't work for now ```