from array import array from itertools import count from typing import Callable, Dict, List, Optional from typing import Sequence as GenericSequence from typing import TypeVar, Union from unittest.mock import MagicMock import torch from aphrodite.common.sampling_params import SamplingParams from aphrodite.common.sequence import (CompletionSequenceGroupOutput, Logprob, SequenceData, SequenceGroupMetadata, SequenceOutput) from aphrodite.common.utils import (get_distributed_init_method, get_ip, get_open_port) from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE from aphrodite.engine.args_tools import EngineArgs from aphrodite.modeling.layers.sampler import SamplerOutput from aphrodite.modeling.utils import set_random_seed from aphrodite.worker.cache_engine import CacheEngine from aphrodite.worker.model_runner import ModelRunner from aphrodite.worker.worker import Worker T = TypeVar("T", bound=Worker) def round_up_to_next_block(seq_len: int, block_size: int) -> int: return (seq_len + block_size - 1) // block_size def mock_worker(cls=None, vocab_size: int = 30_000, max_model_len: int = 2048, rank: int = 0, use_spec: bool = True) -> MagicMock: if cls is None: cls = Worker spec = cls if use_spec else None worker = MagicMock(spec=spec) worker.vocab_size = vocab_size worker.max_model_len = max_model_len worker.rank = rank worker.device = 'cuda:0' return worker def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]): seed_iter = iter(rand_seeds) original_execute_model = worker.execute_model def new_execute_model(*args, **kwargs): result = original_execute_model(*args, **kwargs) set_random_seed(next(seed_iter)) return result return new_execute_model def zero_kv_cache(cache_engine: List[CacheEngine]): assert cache_engine[0].gpu_cache for key_blocks, value_blocks in cache_engine[0].gpu_cache: key_blocks.zero_() value_blocks.zero_() def create_worker(cls: Callable[..., T], model_name: str, block_size: int, num_gpu_blocks: int, seed: int, is_driver_worker: bool = True, enforce_eager: bool = True, model_runner_cls: Optional[ModelRunner] = None) -> T: engine_args = EngineArgs( model=model_name, seed=seed, block_size=block_size, enforce_eager=enforce_eager, ) engine_config = engine_args.create_engine_config() distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) worker = cls( model_config=engine_config.model_config, parallel_config=engine_config.parallel_config, scheduler_config=engine_config.scheduler_config, device_config=engine_config.device_config, cache_config=engine_config.cache_config, load_config=engine_config.load_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, is_driver_worker=is_driver_worker, model_runner_cls=model_runner_cls, ) worker.init_device() worker.load_model() engine_config.cache_config.num_gpu_blocks = num_gpu_blocks engine_config.cache_config.num_cpu_blocks = 0 worker.initialize_cache( num_gpu_blocks=engine_config.cache_config.num_gpu_blocks, num_cpu_blocks=engine_config.cache_config.num_cpu_blocks) return worker def create_seq_group_metadata_from_prompts( prompts: List[List[int]], num_gpu_blocks: int, block_size: int, final_prompt_lens: List[int], continuations: Optional[List[List[int]]] = None, seq_ids: Optional[List[int]] = None, ) -> List[SequenceGroupMetadata]: if continuations is None: continuations = [[] for _ in prompts] if seq_ids is None: seq_ids = list(i for i, _ in enumerate(prompts)) free_gpu_blocks = list(range(num_gpu_blocks)) block_allocations = { i: [ free_gpu_blocks.pop() for _ in range(round_up_to_next_block(final_len, block_size)) ] for i, final_len in enumerate(final_prompt_lens) } return [ SequenceGroupMetadata( request_id=str(i), is_prompt=len(cont_token_ids) == 0, seq_data={ i: SequenceData( array(APHRODITE_TOKEN_ID_ARRAY_TYPE, prompt_token_ids[:]), _output_token_ids=array(APHRODITE_TOKEN_ID_ARRAY_TYPE, cont_token_ids[:]), ), }, sampling_params=SamplingParams(temperature=0.0, ), block_tables={i: block_allocations[i][:]}, ) for i, (prompt_token_ids, cont_token_ids) in enumerate(zip(prompts, continuations)) ] def assert_logprobs_dict_allclose( actual_logprobs: List[Dict[int, Logprob]], expected_logprobs: List[Dict[int, Logprob]]) -> None: for single_step_actual_logprobs, single_step_expected_logprobs in zip( actual_logprobs, expected_logprobs): assert set(single_step_actual_logprobs.keys()) == set( single_step_expected_logprobs.keys()) for token_id in single_step_actual_logprobs: actual = torch.tensor( single_step_actual_logprobs[token_id].logprob) expected = torch.tensor( single_step_expected_logprobs[token_id].logprob) torch.testing.assert_close(actual, expected) def create_sampler_output_list( token_ids: torch.Tensor, probs: GenericSequence[Optional[torch.Tensor]], logprobs: GenericSequence[Optional[torch.Tensor]], seq_ids: Optional[List[int]] = None) -> List[SamplerOutput]: num_steps, batch_size = token_ids.shape token_ids_by_step = token_ids.tolist() if seq_ids is None: seq_ids = list(range(batch_size)) return [ SamplerOutput(outputs=[ CompletionSequenceGroupOutput( samples=[ SequenceOutput( output_token=token_id, parent_seq_id=seq_ids[seq_index], logprobs={token_id: Logprob(0)}, ) ], prompt_logprobs=None, ) for seq_index, token_id in enumerate(token_ids_by_step[step]) ], sampled_token_probs=probs[step], logprobs=logprobs[step], sampled_token_ids=token_ids[step]) for step in range(num_steps) ] def create_batch(batch_size, k, prompt_len: Union[int, List[int]] = 10, prev_output_token_len: int = 10, seq_ids: Optional[List[int]] = None, num_gpu_blocks: Optional[int] = None, block_size: Optional[int] = None): if block_size is None: block_size = 8 if num_gpu_blocks is None: num_gpu_blocks = 2048 // block_size iterator = count() if isinstance(prompt_len, int): prompt_lens = [prompt_len for _ in range(batch_size)] else: prompt_lens = prompt_len prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens] prev_output_tokens = [[ next(iterator) for _ in range(prev_output_token_len) ] for _ in range(batch_size)] final_prompt_lens = [ len(prompt) + len(prev_output_token) + k + 1 for prompt, prev_output_token in zip(prompts, prev_output_tokens) ] seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, final_prompt_lens, prev_output_tokens, seq_ids) return seq_group_metadata_list, prompts, prev_output_tokens