"""CacheEngine class for managing the KV cache.""" from typing import List import torch from aphrodite.attention import get_attn_backend from aphrodite.common.config import (CacheConfig, DeviceConfig, ModelConfig, ParallelConfig) from aphrodite.common.utils import (STR_DTYPE_TO_TORCH_DTYPE, get_dtype_size, is_pin_memory_available) class CacheEngine: """Manages the KV cache. This class is responsible for initializing and managing the GPU and CPU KV caches. It also provides methods for performing KV cache operations, such as swapping and copying. """ def __init__( self, cache_config: CacheConfig, model_config: ModelConfig, parallel_config: ParallelConfig, device_config: DeviceConfig, tp_rank: int = 0, ) -> None: self.cache_config = cache_config self.model_config = model_config self.parallel_config = parallel_config self.device_config = device_config self.head_size = model_config.get_head_size() # Models like Jamba, have mixed typed layers, E.g Mamba self.num_attention_layers = model_config.get_num_attention_layers( parallel_config) self.num_kv_heads = model_config.get_num_kv_heads( parallel_config, tp_rank) self.block_size = cache_config.block_size self.num_gpu_blocks = cache_config.num_gpu_blocks if self.num_gpu_blocks: self.num_gpu_blocks //= parallel_config.pipeline_parallel_size self.num_cpu_blocks = cache_config.num_cpu_blocks if self.num_cpu_blocks: self.num_cpu_blocks //= parallel_config.pipeline_parallel_size if cache_config.cache_dtype == "auto": self.dtype = model_config.dtype else: self.dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype] # Get attention backend. self.attn_backend = get_attn_backend(self.head_size, model_config.get_sliding_window(), model_config.dtype, cache_config.cache_dtype, self.block_size, model_config.is_attention_free()) # Initialize the cache. self.gpu_cache = self._allocate_kv_cache( self.num_gpu_blocks, self.device_config.device_type) self.cpu_cache = self._allocate_kv_cache(self.num_cpu_blocks, "cpu") def _allocate_kv_cache( self, num_blocks: int, device: str, ) -> List[torch.Tensor]: """Allocates KV cache on the specified device.""" kv_cache_shape = self.attn_backend.get_kv_cache_shape( num_blocks, self.block_size, self.num_kv_heads, self.head_size) pin_memory = is_pin_memory_available() if device == "cpu" else False kv_cache: List[torch.Tensor] = [] for _ in range(self.num_attention_layers): # null block in CpuGpuBlockAllocator requires at least that # block to be zeroed-out. # We zero-out everything for simplicity. kv_cache.append( torch.zeros(kv_cache_shape, dtype=self.dtype, pin_memory=pin_memory, device=device)) return kv_cache def swap_in(self, src_to_dst: torch.Tensor) -> None: for i in range(self.num_attention_layers): self.attn_backend.swap_blocks(self.cpu_cache[i], self.gpu_cache[i], src_to_dst) def swap_out(self, src_to_dst: torch.Tensor) -> None: for i in range(self.num_attention_layers): self.attn_backend.swap_blocks(self.gpu_cache[i], self.cpu_cache[i], src_to_dst) def copy(self, src_to_dsts: torch.Tensor) -> None: self.attn_backend.copy_blocks(self.gpu_cache, src_to_dsts) @staticmethod def get_cache_block_size( cache_config: CacheConfig, model_config: ModelConfig, parallel_config: ParallelConfig, tp_rank: int = 0, ) -> int: head_size = model_config.get_head_size() num_heads = model_config.get_num_kv_heads(parallel_config, tp_rank) num_attention_layers = model_config.get_num_attention_layers( parallel_config) key_cache_block = cache_config.block_size * num_heads * head_size value_cache_block = key_cache_block total = num_attention_layers * (key_cache_block + value_cache_block) if cache_config.cache_dtype == "auto": dtype = model_config.dtype else: dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype] dtype_size = get_dtype_size(dtype) return dtype_size * total