import random from typing import Dict, List from unittest.mock import MagicMock import pytest import torch from aphrodite.common.sequence import (ExecuteModelRequest, Logprob, SamplerOutput) from aphrodite.modeling.utils import set_random_seed from aphrodite.spec_decode.draft_model_runner import TP1DraftModelRunner from aphrodite.spec_decode.multi_step_worker import MultiStepWorker from aphrodite.spec_decode.top1_proposer import Top1Proposer from aphrodite.task_handler.worker import Worker from .utils import (assert_logprobs_dict_allclose, create_batch, create_seq_group_metadata_from_prompts, create_worker, patch_execute_model_with_seeds, zero_kv_cache) @pytest.mark.parametrize('num_steps', list(range(1, 17))) def test_assert_enough_kv_space(num_steps: int): """Test that the multi step worker checks for sufficient space in the KV cache. It should throw if it cannot run all the steps. """ block_size = 16 num_gpu_blocks = 2048 // block_size prompts = [ list(range(block_size * 3)), list(range(block_size * 2)), ] prev_output_tokens = [ list(range(block_size * 1)), list(range(block_size * 2)), ] final_prompt_lens = [ len(prompt + output) + num_steps for prompt, output in zip(prompts, prev_output_tokens) ] inputs = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, final_prompt_lens, continuations=prev_output_tokens) assert_enough_kv_space = MultiStepWorker._assert_enough_kv_space # pylint: disable=protected-access worker = MagicMock() worker.model_runner.block_size = block_size for seq_group_metadata in inputs: original_block_tables = seq_group_metadata.block_tables # No exception. assert_enough_kv_space(worker, inputs, num_steps) seq_group_metadata.block_tables = { seq_id: [] for seq_id, physical_blocks in original_block_tables.items() } # Expect exception. with pytest.raises(ValueError, match='times but found insufficient KV space for'): assert_enough_kv_space(worker, inputs, num_steps) seq_group_metadata.block_tables = original_block_tables @torch.inference_mode() def test_same_output_for_single_step(): """Verify the multi step worker produces the same output as the normal worker for num_steps=1. """ seed = 100 model_name = 'JackFram/llama-68m' block_size = 32 num_gpu_blocks = 2048 // block_size multi_step_worker = create_worker( MultiStepWorker, model_name, block_size, num_gpu_blocks, seed, model_runner_cls=TP1DraftModelRunner, ) worker = create_worker( Worker, model_name, block_size, num_gpu_blocks, seed, ) # multi_step_worker.model_runner = worker.model_runner # multi_step_worker.cache_engine = worker.cache_engine num_steps = 1 prompts = [ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], ] final_prompt_lens = [len(prompt) + num_steps for prompt in prompts] multi_step_seq_group = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, final_prompt_lens=final_prompt_lens) zero_kv_cache(multi_step_worker.cache_engine) set_random_seed(seed) actual_output, _ = multi_step_worker.sampler_output( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=multi_step_seq_group), sample_len=num_steps, seq_ids_with_bonus_token_in_last_step=set()) assert len(actual_output) == num_steps actual_output = actual_output[0] single_step_seq_group = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, final_prompt_lens=final_prompt_lens) zero_kv_cache(worker.cache_engine) set_random_seed(seed) expected_output = worker.execute_model( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=single_step_seq_group))[0] actual_token_ids = [ output.samples[0].output_token for output in actual_output ] actual_logprobs = [output.samples[0].logprobs for output in actual_output] expected_token_ids = [ output.samples[0].output_token for output in expected_output ] expected_logprobs = [ output.samples[0].logprobs for output in expected_output ] assert actual_token_ids == expected_token_ids print(f'{actual_logprobs=}') print(f'{expected_logprobs=}') assert_logprobs_dict_allclose(actual_logprobs, expected_logprobs) @torch.inference_mode() def test_same_output_for_multi_step(): """Verify the multi-step worker produces the same output as the normal worker when num_steps > 1. This test runs the multi-step worker once, and then runs the worker num_steps times, and compares the output. """ seed = 100 model_name = 'JackFram/llama-68m' block_size = 16 num_gpu_blocks = 2048 // block_size multi_step_worker = create_worker( MultiStepWorker, model_name, block_size, num_gpu_blocks, seed, model_runner_cls=TP1DraftModelRunner, ) worker = create_worker( Worker, model_name, block_size, num_gpu_blocks, seed, ) # Make sure we go over the block boundary. num_steps = block_size + 1 random.seed(seed) prompts = [[ random.randint(0, 1000) for _ in range(random.randint(10, 20)) ] for _ in range(10)] final_prompt_lens = [len(prompt) + num_steps for prompt in prompts] rand_seeds = list(random.randint(0, 100) for _ in range(num_steps)) multi_step_worker.execute_model = patch_execute_model_with_seeds( multi_step_worker, rand_seeds) worker.execute_model = patch_execute_model_with_seeds(worker, rand_seeds) continuations = [[1] for _ in prompts] seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) # Run multi-step. zero_kv_cache(multi_step_worker.cache_engine) set_random_seed(seed) multi_step_output, _ = multi_step_worker.sampler_output( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list), sample_len=num_steps, seq_ids_with_bonus_token_in_last_step=set()) # Run single-step repeatedly. zero_kv_cache(worker.cache_engine) single_step_output: List[SamplerOutput] = [] continuations = [[1] for _ in prompts] set_random_seed(seed) for _ in multi_step_output: seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) single_step_output.extend( worker.execute_model(execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list))) # Append output tokens to new sequence data. for i, seq_group_output in enumerate(single_step_output[-1]): continuations[i].append(seq_group_output.samples[0].output_token) # Get token ids and logprobs for comparison. multi_step_output_logprobs: List[List[Dict[int, Logprob]]] = [[] for _ in prompts] single_step_output_logprobs: List[List[Dict[int, Logprob]]] = [[] for _ in prompts] multi_step_output_token_ids: List[List[int]] = [[] for _ in prompts] single_step_output_token_ids: List[List[int]] = [[] for _ in prompts] for i, _ in enumerate(prompts): for multi_step, single_step in zip(multi_step_output, single_step_output): multi_step_output_token_ids[i].append( multi_step[i].samples[0].output_token) single_step_output_token_ids[i].append( single_step[i].samples[0].output_token) multi_step_output_logprobs[i].append( multi_step[i].samples[0].logprobs) single_step_output_logprobs[i].append( single_step[i].samples[0].logprobs) # Print per-sequence token ids for i, (multi_step_tokens, single_step_tokens) in enumerate( zip(multi_step_output_token_ids, single_step_output_token_ids)): print(f'{i=} {multi_step_tokens=}') print(f'{i=} {single_step_tokens=}') print(f'{i=} equal {multi_step_tokens == single_step_tokens}') # Assert token ids are equal. for multi_step_tokens, single_step_tokens in zip( multi_step_output_token_ids, single_step_output_token_ids): assert multi_step_tokens == single_step_tokens # Assert logprobs are equal. for multi_step_logprobs, single_step_logprobs in zip( multi_step_output_logprobs, single_step_output_logprobs): assert_logprobs_dict_allclose(multi_step_logprobs, single_step_logprobs) @torch.inference_mode() def test_multi_step_with_batch_expansion_correct_output(): """ In this test we verify that the MultiStepWorker is able to handle bonus tokens correctly. The test verifies that if a sequence has a bonus token then the MultiStepWorker is able to expand the batch by adding new sequences corresponding to the sequences with bonus tokens. The expanded batch is then used for predicting the next tokens. """ seed = 100 model_name = 'JackFram/llama-68m' block_size = 16 num_gpu_blocks = 2048 // block_size batch_size = 128 multi_step_worker = create_worker( MultiStepWorker, model_name, block_size, num_gpu_blocks, seed, model_runner_cls=TP1DraftModelRunner, ) worker = create_worker( Worker, model_name, block_size, num_gpu_blocks, seed, ) random.seed(seed) prompts = [[0] for _ in range(batch_size)] num_steps = 2 final_prompt_lens = [(num_steps + 1) for prompt in prompts] rand_seeds = list(random.randint(0, 100) for _ in range(num_steps)) multi_step_worker.execute_model = patch_execute_model_with_seeds( multi_step_worker, rand_seeds) worker.execute_model = patch_execute_model_with_seeds(worker, rand_seeds) # Create the test continuations continuations = [[random.randint(0, 1000)] for _ in prompts] seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) # Run single-step twice to generate 2 tokens. This # will simulate the bonus token case with the second token # being the bonus token. zero_kv_cache(worker.cache_engine) single_step_output: List[SamplerOutput] = [] set_random_seed(seed) for _ in range(num_steps): seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) single_step_output.extend( worker.execute_model(execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list))) # Append output tokens to new sequence data. for i, seq_group_output in enumerate(single_step_output[-1]): continuations[i].append(seq_group_output.samples[0].output_token) # Create continuations for the MultiStepWorker. The continuations have # 2 tokens in order to simulate the bonus token case. multi_step_continuations = [] for continuation in continuations: multi_step_continuations.append(continuation[:2]) seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=multi_step_continuations, final_prompt_lens=final_prompt_lens) # Run multi-step and verify that the third token prediction is accurate # for all sequences. zero_kv_cache(multi_step_worker.cache_engine) all_seq_ids = {i for i in range(batch_size)} multi_step_output, _ = multi_step_worker.sampler_output( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list), sample_len=1, seq_ids_with_bonus_token_in_last_step=all_seq_ids) for index, output in enumerate(multi_step_output[-1].outputs): assert (continuations[index][-1] == output.samples[0].output_token) @torch.inference_mode() def test_multi_step_with_batch_expansion_incorrect_output(): """ Tests the MultiStepWorker's ability to handle batch expansion with bonus tokens in a negative case scenario. This test provides the MultiStepWorker with a batch containing sequences with bonus tokens but specifies the sequence IDs with bonus tokens incorrectly. The test verifies that the MultiStepWorker generates correct tokens for the sequences where the sequence ID is specified correctly and incorrect tokens for those where the sequence ID is specified incorrectly. """ seed = 100 model_name = 'JackFram/llama-68m' block_size = 16 num_gpu_blocks = 2048 // block_size batch_size = 128 multi_step_worker = create_worker( MultiStepWorker, model_name, block_size, num_gpu_blocks, seed, model_runner_cls=TP1DraftModelRunner, ) worker = create_worker( Worker, model_name, block_size, num_gpu_blocks, seed, ) random.seed(seed) prompts = [[0] for _ in range(batch_size)] num_steps = 2 final_prompt_lens = [(num_steps + 1) for prompt in prompts] rand_seeds = list(random.randint(0, 100) for _ in range(num_steps)) multi_step_worker.execute_model = patch_execute_model_with_seeds( multi_step_worker, rand_seeds) worker.execute_model = patch_execute_model_with_seeds(worker, rand_seeds) # Create the test continuations continuations = [[random.randint(0, 1000)] for _ in prompts] seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) # Run single-step twice to generate 2 tokens. This # will simulate the bonus token case with the second token # being the bonus token. zero_kv_cache(worker.cache_engine) single_step_output: List[SamplerOutput] = [] set_random_seed(seed) for _ in range(num_steps): seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=continuations, final_prompt_lens=final_prompt_lens) single_step_output.extend( worker.execute_model(execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list))) # Append output tokens to new sequence data. for i, seq_group_output in enumerate(single_step_output[-1]): continuations[i].append(seq_group_output.samples[0].output_token) # Create continuations for the MultiStepWorker. The continuations have # 2 tokens in order to simulate the bonus token case. multi_step_continuations = [] for continuation in continuations: multi_step_continuations.append(continuation[:2]) seq_group_metadata_list = create_seq_group_metadata_from_prompts( prompts, num_gpu_blocks, block_size, continuations=multi_step_continuations, final_prompt_lens=final_prompt_lens) # Run multi-step. In this run INCORRECTLY specify that only the odd number # sequences have bonus tokens. Verify that with this setting the third token # prediction is accurate only for the odd numbered sequences. Also verify # that the prediction might be wrong for some of the even numbered # sequences. zero_kv_cache(multi_step_worker.cache_engine) set_random_seed(seed) odd_seq_ids = {i for i in range(batch_size) if i % 2 != 0} multi_step_output, _ = multi_step_worker.sampler_output( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list), sample_len=1, seq_ids_with_bonus_token_in_last_step=odd_seq_ids) num_mismatch = 0 for index, output in enumerate(multi_step_output[-1].outputs): if (index % 2) != 0: assert (continuations[index][-1] == output.samples[0].output_token) elif (continuations[index][-1] != output.samples[0].output_token): num_mismatch += 1 # The prediction is accurate for some of the sequences even without proper # handling of the bonus tokens. Hence verify that the number of sequences # for which there is a mismatch is > 0. assert (num_mismatch > 0) @torch.inference_mode() def test_draft_proposals_full_speculation_len(): """Verify Top1Proposer correctly handles case where all sequences can speculate. """ k = 10 batch_size = 32 vocab_size = 32_000 device = 'cuda:0' draft_worker = MagicMock() proposer = Top1Proposer( worker=draft_worker, device=device, vocab_size=vocab_size, max_proposal_len=2048, ) draft_worker.sampler_output.return_value = [ SamplerOutput( outputs=[], sampled_token_probs=torch.rand(batch_size, vocab_size, device=device, dtype=torch.float32), logprobs=torch.rand(batch_size, vocab_size, device=device, dtype=torch.float32), sampled_token_ids=torch.randint(low=0, high=vocab_size, size=(batch_size, ), device=device, dtype=torch.long), ) for _ in range(k) ], True seq_group_metadata_list, _, _ = create_batch(batch_size, k) proposals = proposer.get_spec_proposals( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k), seq_ids_with_bonus_token_in_last_step=set()) assert torch.is_tensor(proposals.proposal_token_ids) assert torch.is_tensor(proposals.proposal_probs) assert proposals.proposal_token_ids.shape == torch.Size([batch_size, k]) assert proposals.proposal_probs.shape[:-1] == torch.Size([batch_size, k]) assert proposals.proposal_lens.shape == torch.Size([batch_size]) assert proposals.proposal_lens.tolist() == [k for _ in range(batch_size)] @torch.inference_mode() def test_draft_proposals_no_speculations(): """Verify Top1Proposer correctly handles case where no sequences can speculate. """ k = 10 batch_size = 32 vocab_size = 32_000 device = 'cuda:0' prompt_len = 10 draft_worker = MagicMock() proposer = Top1Proposer( worker=draft_worker, device=device, vocab_size=vocab_size, max_proposal_len=prompt_len + k - 1, ) seq_group_metadata_list, _, _ = create_batch(batch_size, k, prompt_len=prompt_len) proposals = proposer.get_spec_proposals( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k), seq_ids_with_bonus_token_in_last_step=set()) assert torch.is_tensor(proposals.proposal_token_ids) assert torch.is_tensor(proposals.proposal_probs) assert proposals.proposal_token_ids.shape == torch.Size([batch_size, k]) assert proposals.proposal_probs.shape[:-1] == torch.Size([batch_size, k]) assert proposals.proposal_lens.shape == torch.Size([batch_size]) assert proposals.proposal_lens.tolist() == [0 for _ in range(batch_size)] @torch.inference_mode() def test_draft_proposals_mixed_k(): """Verify Top1Proposer correctly handles case some sequences can speculate and some can't. """ k = 10 batch_size = 32 vocab_size = 32_000 device = 'cuda:0' small_prompt_len = 5 long_prompt_len = 10 prev_output_token_len = 20 expected_num_proposal_seqs = 6 expected_num_no_proposal_seqs = batch_size - expected_num_proposal_seqs prompt_len = [ small_prompt_len for _ in range(expected_num_proposal_seqs - 1) ] + [long_prompt_len for _ in range(expected_num_no_proposal_seqs)] + [small_prompt_len] draft_worker = MagicMock() proposer = Top1Proposer( worker=draft_worker, device=device, vocab_size=vocab_size, max_proposal_len=long_prompt_len + prev_output_token_len + k - 1, ) draft_worker.sampler_output.return_value = [ SamplerOutput( outputs=[], sampled_token_probs=torch.rand(expected_num_proposal_seqs, vocab_size, device=device, dtype=torch.float32), logprobs=torch.rand(expected_num_proposal_seqs, vocab_size, device=device, dtype=torch.float32), sampled_token_ids=torch.randint( low=0, high=vocab_size, size=(expected_num_proposal_seqs, ), device=device, dtype=torch.long), ) for _ in range(k) ], True seq_group_metadata_list, _, _ = create_batch( batch_size, k, prompt_len=prompt_len, prev_output_token_len=prev_output_token_len, ) proposals = proposer.get_spec_proposals( execute_model_req=ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k), seq_ids_with_bonus_token_in_last_step=set()) assert torch.is_tensor(proposals.proposal_token_ids) assert torch.is_tensor(proposals.proposal_probs) assert proposals.proposal_token_ids.shape == torch.Size([batch_size, k]) assert proposals.proposal_probs.shape[:-1] == torch.Size([batch_size, k]) assert proposals.proposal_lens.shape == torch.Size([batch_size]) assert proposals.proposal_lens.tolist() == [ k for _ in range(expected_num_proposal_seqs - 1) ] + [0 for _ in range(expected_num_no_proposal_seqs)] + [k] @torch.inference_mode() def test_use_draft_model_runner_advance_step(): """Verify that draft model runner triggers advance step when applicable. """ seed = 100 model_name = 'JackFram/llama-68m' k = 5 batch_size = 32 block_size = 32 num_gpu_blocks = 2048 // block_size worker = create_worker( MultiStepWorker, model_name, block_size, num_gpu_blocks, seed, model_runner_cls=TP1DraftModelRunner, ) # Mock "_gpu_advance_step" to raise an exception when called. exception_secret = "artificial stop" worker.model_runner._gpu_advance_step = MagicMock() worker.model_runner._gpu_advance_step.side_effect = ValueError( exception_secret) seq_group_metadata_list, _, _ = create_batch(batch_size, k) # Fallback (should not call) when num_steps=1. execute_model_req = ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k, num_steps=1) worker.execute_model(execute_model_req=execute_model_req) # Expect exception if _gpu_advance_step is called. execute_model_req = ExecuteModelRequest( seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k, num_steps=k) with pytest.raises(ValueError, match=exception_secret): worker.execute_model(execute_model_req=execute_model_req) call_args_list = worker.model_runner._gpu_advance_step.call_args_list assert len(call_args_list) == 1