""" This file test accuracy of the Aphrodite server via LMEval. It uses local-completions, which interacts with Aphrodite through the OAI API with N concurrent connections. This simulates real work usage of the API and makes sure that the zmq frontend mp RPC message passing and AsyncAPhroditeEngine are working correctly. """ import lm_eval import pytest from ...utils import RemoteOpenAIServer MODEL_NAME = "Qwen/Qwen2-1.5B-Instruct" NUM_CONCURRENT = 500 TASK = "gsm8k" FILTER = "exact_match,strict-match" RTOL = 0.03 EXPECTED_VALUE = 0.58 DEFAULT_ARGS = ["--max-model-len", "4096", "--disable-log-requests"] MORE_ARGS_LIST = [ ["--enable-chunked-prefill"], # Chunked ["--num-scheduler-steps", "8"], # MS ["--num-scheduler-steps", "8", "--multi-step-stream-outputs"] # MS+Stream ] @pytest.mark.parametrize("more_args", MORE_ARGS_LIST) def test_lm_eval_accuracy(more_args): args = list(DEFAULT_ARGS) args.extend(more_args) print(f"Running with: {args}") with RemoteOpenAIServer(MODEL_NAME, args) as remote_server: url = f"{remote_server.url_for('v1')}/completions" model_args = ( f"model={MODEL_NAME}," f"base_url={url}," f"num_concurrent={NUM_CONCURRENT},tokenized_requests=False") results = lm_eval.simple_evaluate( model="local-completions", model_args=model_args, tasks=TASK, ) measured_value = results["results"][TASK][FILTER] assert (measured_value - RTOL < EXPECTED_VALUE and measured_value + RTOL > EXPECTED_VALUE ), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"