from contextlib import suppress from typing import Any, Dict, List, Optional, Tuple, Union import torch from loguru import logger from torch.nn import Module from torch.nn.parameter import Parameter from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import (QuantizationConfig, QuantizeMethodBase) from aphrodite.common.utils import print_warning_once HAS_QUANTS = False with suppress(ImportError): from aphrodite._quant_C import quant_ops as ops HAS_QUANTS = True ACTIVATION_SCHEMES = ["static", "dynamic"] def scaled_fp8_quant( input: torch.Tensor, scale: Optional[torch.Tensor] = None, batch_dim_padding: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Quantize input tensor to FP8 and return quantized tensor and scale. This function supports both static and dynamic quantization: If you provide the scale, it will use static scaling and if you omit it, the scale will be determined dynamically. The function also allows optional padding of the output tensor for downstream kernels that will benefit from padding. Args: input: The input tensor to be quantized to FP8 scale: Optional scaling factor for the FP8 quantization batch_dim_padding: If specified, pad the first dimension of the output to at least this value. Returns: Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and scaling factor. """ if batch_dim_padding: shape = (max(batch_dim_padding, input.shape[0]), *input.shape[1:]) output = torch.empty(shape, device=input.device, dtype=torch.float8_e4m3fn) else: output = torch.empty_like(input, dtype=torch.float8_e4m3fn) if scale is None: scale = torch.zeros(1, device=input.device, dtype=torch.float32) ops.dynamic_scaled_fp8_quant(output, input, scale) else: ops.static_scaled_fp8_quant(output, input, scale) return output, scale class Fp8Config(QuantizationConfig): """Config class for FP8.""" def __init__( self, is_checkpoint_fp8_serialized: bool = False, activation_scheme: str = "dynamic", ) -> None: self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized if is_checkpoint_fp8_serialized: logger.warning("Detected fp8 checkpoint. Please note that the " "format is experimental and subject to change.") if activation_scheme not in ACTIVATION_SCHEMES: raise ValueError( f"Unsupported activation scheme {activation_scheme}") self.activation_scheme = activation_scheme @classmethod def get_name(cls) -> str: return "fp8" @classmethod def get_supported_act_dtypes(cls) -> List[torch.dtype]: return [torch.bfloat16, torch.half] @classmethod def get_min_capability(cls) -> int: return 89 @classmethod def get_config_filenames(cls) -> List[str]: return [] @classmethod def from_config(cls, config: Dict[str, Any]) -> "Fp8Config": quant_method = cls.get_from_keys(config, ["quant_method"]) is_checkpoint_fp8_serialized = ("fp8" in quant_method) activation_scheme = cls.get_from_keys(config, ["activation_scheme"]) return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized, activation_scheme=activation_scheme) def get_quant_method( self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]: from aphrodite.attention.layer import Attention # Avoid circular import if isinstance(layer, LinearBase): return Fp8LinearMethod(self) if isinstance(layer, Attention): return Fp8KVCacheMethod(self) return None def get_scaled_act_names(self) -> List[str]: return [] class Fp8LinearMethod(LinearMethodBase): """Linear method for FP8. Supports loading FP8 checkpoints with static weight scale and dynamic/static activation scale. Also supports loading quantized FP16/BF16 model checkpoints with dynamic activation scaling. The weight scaling factor will be initialized after the model weights are loaded. Limitations: 1. Only support per-tensor quantization due to torch._scaled_mm support. 2. Only support float8_e4m3fn data type due to the limitation of torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856) Args: quant_config: The quantization config. """ def __init__(self, quant_config: Fp8Config): if not HAS_QUANTS: raise ImportError("Could not find the quantization kernels.") self.quant_config = quant_config def _create_scale_param( self, scale_name: str, layer: torch.nn.Module, output_partition_sizes: List[int], **extra_weight_attrs, ) -> None: scale = Parameter(torch.empty(len(output_partition_sizes), dtype=torch.float32), requires_grad=False) layer.register_parameter(scale_name, scale) set_weight_attrs( scale, { **extra_weight_attrs, "fp8_scales_shard_indexer": self.scales_shard_indexer, }) def create_weights( self, layer: torch.nn.Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs, ): del input_size, output_size output_size_per_partition = sum(output_partition_sizes) layer.process_after_load = True layer.logical_widths = output_partition_sizes # WEIGHT weight_dtype = (torch.float8_e4m3fn if self.quant_config.is_checkpoint_fp8_serialized else params_dtype) weight = Parameter(torch.empty(output_size_per_partition, input_size_per_partition, dtype=weight_dtype), requires_grad=False) layer.register_parameter("weight", weight) set_weight_attrs(weight, { **extra_weight_attrs, "input_dim": 1, "output_dim": 0, }) # If checkpoint is serialized fp8, load them. # Otherwise, wait until process_weights_after_loading. if self.quant_config.is_checkpoint_fp8_serialized: # WEIGHT SCALE self._create_scale_param( scale_name="weight_scale", layer=layer, output_partition_sizes=output_partition_sizes, **extra_weight_attrs) # ACTIVATION SCALE if self.quant_config.activation_scheme == "static": self._create_scale_param( scale_name="act_scale", layer=layer, output_partition_sizes=output_partition_sizes, **extra_weight_attrs) def scales_shard_indexer( self, param: torch.Tensor, loaded_weight: torch.Tensor, shard_id: Union[str, int]) -> Tuple[torch.Tensor, torch.Tensor]: qkv_idxs = {"q": 0, "k": 1, "v": 2} if isinstance(shard_id, int): pass elif isinstance(shard_id, str): if shard_id not in qkv_idxs: raise ValueError(f"Unknown shard_id: {shard_id}") shard_id = qkv_idxs[shard_id] else: ValueError(f"Shard id must be int or str but got {type(shard_id)}") return param[shard_id], loaded_weight def process_weights_after_loading(self, layer: Module) -> None: if (not hasattr(layer, "process_after_load") or not layer.process_after_load): return # If checkpoint is fp/bf16 (not serialized fp8), quantize the weights. if not self.quant_config.is_checkpoint_fp8_serialized: qweight, weight_scale = scaled_fp8_quant(layer.weight, scale=None) layer.weight = Parameter(qweight.t(), requires_grad=False) layer.weight_scale = Parameter(weight_scale, requires_grad=False) layer.logical_widths = None layer.act_scale = None return # If checkpoint is fp8, requantize the separately quantized logical # weights into a single fp8 weight with a single weight scale. else: # WEIGHT_SCALE / WEIGHT # Loop over logical weights, requantizing with single scale. max_w_scale = layer.weight_scale.max() start = 0 for idx, logical_width in enumerate(layer.logical_widths): end = start + logical_width weight_dq = per_tensor_dequantize(layer.weight[start:end, :], layer.weight_scale[idx]) layer.weight[start:end, :] = per_tensor_quantize( weight_dq, layer.weight_scale.max()) start = end layer.weight_scale = Parameter(max_w_scale, requires_grad=False) # WEIGHT # Transpose weight for passing to torch._scaled_mm weight = layer.weight layer.weight = Parameter(weight.t(), requires_grad=False) # ACT_SCALE # Dynamic: set to None (required input to ops.scaled_fp8_quant). # Static: set to max of the act_scales (since they are equal). if self.quant_config.activation_scheme == "dynamic": layer.act_scale = None elif self.quant_config.activation_scheme == "static": if not all_close_1d(layer.act_scale): raise ValueError( "All the act_scales for the logical weights of a layer " f"must be equal. But got {layer.act_scale}") layer.act_scale = Parameter(layer.act_scale.max(), requires_grad=False) else: raise ValueError( f"Unknown scheme {self.quant_config.activation_scheme}") def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: # ops.scaled_fp8_quant supports both dynamic and static quant. # If dynamic, layer.act_scale is None and x_scale computed from x. # If static, layer.act_scale is scalar and x_scale set to act_scale. qinput, x_scale = scaled_fp8_quant(x, layer.act_scale, batch_dim_padding=17) # Fused GEMM_DQ -- note we padded the input above because # torch._scaled_mm is more performant for matrices with # batch dimension > 16. Note that this could change # in the future. output, _ = torch._scaled_mm( qinput, layer.weight, out_dtype=x.dtype, scale_a=x_scale, scale_b=layer.weight_scale, bias=bias, ) return torch.narrow(output, 0, 0, x.shape[0]) class Fp8KVCacheMethod(QuantizeMethodBase): """Supports loading kv-cache scaling factors from FP8 checkpoints. """ def __init__(self, quant_config: Fp8Config): self.quant_config = quant_config def create_weights(self, layer: torch.nn.Module): """Create "weight" (aka kv_scale) for an attention layer. Args: layer: The layer that is using the QuantizeMethodBase factory. """ # Initialize the KV cache scale to 1.0 as the default value. # If the kv_scale appears in the checkpoint, it will be # overwritten when loading weights. layer.kv_scale = Parameter(torch.tensor(1.0), requires_grad=False) def apply(self, layer: torch.nn.Module) -> torch.Tensor: raise RuntimeError("Fp8KVCacheMethod.apply should not be called.") def process_weights_after_loading(self, layer: Module) -> None: # If the kv-cache dtype is auto, we enforce the kv-scale to be 1.0 # regardless whether the kv-scale is available in the checkpoint. if layer.kv_cache_dtype != "auto": kv_scale = layer.kv_scale.to("cpu").tolist() if not isinstance(kv_scale, float): raise ValueError("Only support per-tensor scaling factor " "for fp8 KV cache") layer._kv_scale = kv_scale if layer._kv_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype: print_warning_once( "Using KV cache scaling factor 1.0 for fp8_e4m3. This may " "cause accuracy issues. Please make sure kv-cache scaling " "factor is available in the fp8 checkpoint.") del layer.kv_scale def all_close_1d(x: torch.Tensor) -> bool: assert len(x.shape) == 1 return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0])) def per_tensor_quantize(tensor: torch.Tensor, inv_scale: float) -> torch.Tensor: finfo = torch.finfo(torch.float8_e4m3fn) qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max) return qweight.to(torch.float8_e4m3fn) def per_tensor_dequantize(tensor: torch.Tensor, inv_scale: float) -> torch.Tensor: fake_qweight = tensor.to(torch.float16) dq_weight = fake_qweight * inv_scale return dq_weight