# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 # # Copyright 2023 The Qwen team. # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Shared resampler perceiver network used in multimodal models and related helpers for sincos positional embeddings. Example models: Qwen (Qwen-VL), Minicpmv2.0 """ import math from functools import partial from typing import Callable, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.nn.init import trunc_normal_ from aphrodite.modeling.layers.linear import ReplicatedLinear DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6) def get_abs_pos( abs_pos: torch.Tensor, tgt_size: Union[torch.Tensor, int] ) -> torch.Tensor: # abs_pos: L, C # tgt_size: (H, W) # return: M, C src_size = int(math.sqrt(abs_pos.size(0))) dtype = abs_pos.dtype if isinstance(tgt_size, int): tgt_size = (tgt_size, tgt_size) if src_size == tgt_size[0] and src_size == tgt_size[1]: return abs_pos return ( F.interpolate( abs_pos.float() .reshape(1, src_size, src_size, -1) .permute(0, 3, 1, 2), size=(tgt_size[0], tgt_size[1]), mode="bicubic", align_corners=False, ) .permute(0, 2, 3, 1) .flatten(0, 2) .to(dtype=dtype) ) # sin/cos positional embedding helpers are adapted from: # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 def get_1d_sincos_pos_embed_from_grid( embed_dim: int, pos: np.ndarray, version: Tuple[int, int] = (2, 0) ) -> torch.Tensor: """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) / (H, W) out: (M, D) / (H, W, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) if version == (2, 0): pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) else: out = np.einsum("hw,d->hwd", pos, omega) # (H, W, D/2), outer product emb_sin = np.sin(out) # (H, W, D/2) emb_cos = np.cos(out) # (H, W, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D) return emb def get_2d_sincos_pos_embed_from_grid( embed_dim: int, grid: np.ndarray, version: Tuple[int, int] = (2, 0) ) -> torch.Tensor: assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[0], version ) # (H*W, D/2) or (H, W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, grid[1], version ) # (H*W, D/2) or (H, W, D/2) if version == (2, 0): emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) else: emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D) return emb def get_2d_sincos_pos_embed( embed_dim: int, grid_size: Union[int, Tuple[int, int]], cls_token: bool = False, version: Tuple[int, int] = (2, 0), ) -> torch.Tensor: """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, int): grid_h_size, grid_w_size = grid_size, grid_size else: grid_h_size, grid_w_size = grid_size[0], grid_size[1] grid_h = np.arange(grid_h_size, dtype=np.float32) grid_w = np.arange(grid_w_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) assert isinstance(grid, np.ndarray) and grid.shape == ( 2, grid_h_size, grid_w_size, ) if version == (2, 0): grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, version) if cls_token: pos_embed = np.concatenate( [np.zeros([1, embed_dim]), pos_embed], axis=0 ) else: pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, version) return pos_embed class BaseResampler(nn.Module): """ A 2D perceiver-resampler network with one cross attention layers by (grid_size**2) learnable queries and 2d sincos pos_emb. Outputs: A tensor with the shape of (grid_size**2, embed_dim) """ def __init__( self, num_queries: int, embed_dim: int, num_heads: int, kv_dim: Optional[int] = None, norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN, do_post_projection: bool = True, ) -> None: super().__init__() self.num_queries = num_queries self.embed_dim = embed_dim self.num_heads = num_heads self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) trunc_normal_(self.query, std=0.02) if kv_dim is not None and kv_dim != embed_dim: self.kv_proj = ReplicatedLinear(kv_dim, embed_dim, bias=False) else: # Maintain the same return value with ReplicatedLinear.forward self.kv_proj = lambda *args, **kwargs: ( # type: ignore # noqa nn.Identity()(*args, **kwargs), None, ) self.attn = nn.MultiheadAttention(embed_dim, num_heads) self.ln_q = norm_layer(embed_dim) self.ln_kv = norm_layer(embed_dim) self.do_post_projection = do_post_projection self.ln_post = norm_layer(embed_dim) if do_post_projection else None self.proj = ( nn.Parameter((embed_dim**-0.5) * torch.randn(embed_dim, embed_dim)) if do_post_projection else None ) def _init_weights(self, m: nn.Module) -> None: if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def _repeat(self, query, N: int): return query.unsqueeze(1).repeat(1, N, 1) class Resampler2(BaseResampler): """Resampler-perceiver network to be used for a variety of model types, e.g., Qwen-vl / Minicpmv 2.0. The main difference is the addition of the do_post_projection arg, which indicates whether or not there should be a post layer normalization and projector after the attention. This is present in minicpmv2.0, but not qwen-vl. """ def __init__( self, grid_size: int, embed_dim: int, num_heads: int, kv_dim: Optional[int] = None, norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN, adaptive: bool = False, do_post_projection: bool = True, ) -> None: super().__init__( grid_size**2, embed_dim, num_heads, kv_dim, norm_layer, do_post_projection=do_post_projection, ) self.adaptive = adaptive pos_embed_arr = get_2d_sincos_pos_embed( embed_dim, grid_size, version=(2, 0) ) self.pos_embed = nn.Parameter( torch.from_numpy(pos_embed_arr).requires_grad_(False) ) self.apply(self._init_weights) def forward( self, x: torch.Tensor, tgt_sizes: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if tgt_sizes is None: tgt_sizes = int(math.sqrt(x.size(1))) if self.adaptive: pos_embed_arr = get_2d_sincos_pos_embed( self.embed_dim, tgt_sizes, version=(2, 0) ) pos_embed = torch.from_numpy(pos_embed_arr).to( device=x.device, dtype=x.dtype ) else: pos_embed = get_abs_pos(self.pos_embed, tgt_sizes).to( device=x.device, dtype=x.dtype ) x, _ = self.kv_proj(x) x = self.ln_kv(x).permute(1, 0, 2) N = x.shape[1] q = self.ln_q(self.query) out = self.attn( self._repeat(q, N) + self.pos_embed.unsqueeze(1), x + pos_embed.unsqueeze(1), x, attn_mask=attn_mask, )[0] x = out.permute(1, 0, 2) if self.do_post_projection: x = self.ln_post(x) x = x @ self.proj return x