import enum from typing import Optional, Tuple import torch class PlatformEnum(enum.Enum): CUDA = enum.auto() ROCM = enum.auto() TPU = enum.auto() CPU = enum.auto() UNSPECIFIED = enum.auto() class Platform: _enum: PlatformEnum def is_cuda(self) -> bool: return self._enum == PlatformEnum.CUDA def is_rocm(self) -> bool: return self._enum == PlatformEnum.ROCM def is_tpu(self) -> bool: return self._enum == PlatformEnum.TPU def is_cpu(self) -> bool: return self._enum == PlatformEnum.CPU @staticmethod def get_device_capability(device_id: int = 0) -> Optional[Tuple[int, int]]: return None @staticmethod def get_device_name(device_id: int = 0) -> str: raise NotImplementedError @staticmethod def inference_mode(): """A device-specific wrapper of `torch.inference_mode`. This wrapper is recommended because some hardware backends such as TPU do not support `torch.inference_mode`. In such a case, they will fall back to `torch.no_grad` by overriding this method. """ return torch.inference_mode(mode=True) class UnspecifiedPlatform(Platform): _enum = PlatformEnum.UNSPECIFIED