import json import re from typing import Dict, List, Sequence, Union import partial_json_parser from loguru import logger from partial_json_parser.core.options import Allow from aphrodite.common.utils import random_uuid from aphrodite.endpoints.openai.protocol import (DeltaFunctionCall, DeltaMessage, DeltaToolCall, ExtractedToolCallInformation, FunctionCall, ToolCall) from aphrodite.endpoints.openai.tool_parsers.abstract_tool_parser import ( ToolParser) from aphrodite.endpoints.openai.tool_parsers.utils import ( extract_intermediate_diff) from aphrodite.transformers_utils.tokenizer import (AnyTokenizer, MistralTokenizer) class MistralToolParser(ToolParser): """ Tool call parser for Mistral 7B Instruct v0.3, intended for use with the examples/tool_chat_template_mistral.jinja template. Used when --enable-auto-tool-choice --tool-call-parser mistral are all set """ def __init__(self, tokenizer: AnyTokenizer): super().__init__(tokenizer) if isinstance(self.model_tokenizer, MistralTokenizer): self.model_tokenizer = self.model_tokenizer.tokenizer else: logger.info( "Non-Mistral tokenizer detected when using a Mistral " "model..." ) # initialize properties used for state when parsing tool calls in # streaming mode self.prev_tool_call_arr: List[Dict] = [] self.current_tool_id: int = -1 self.current_tool_name_sent: bool = False self.streamed_args_for_tool: List[ str ] = [] # map what has been streamed for each tool so far to a list self.bot_token = "[TOOL_CALLS]" self.bot_token_id = self.model_tokenizer.vocab[self.bot_token] self.tool_call_regex = re.compile(r"\[{.*?}\]", re.DOTALL) def extract_tool_calls( self, model_output: str ) -> ExtractedToolCallInformation: """ Extract the tool calls from a complete model response. Requires find-and-replacing single quotes with double quotes for JSON parsing, make sure your tool call arguments don't ever include quotes! """ # case -- if a tool call token is not present, return a text response if self.bot_token not in model_output: return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) try: # use a regex to find the tool call. remove the BOT token # and make sure to replace single quotes with double quotes raw_tool_call = self.tool_call_regex.findall( model_output.replace(self.bot_token, "") )[0] # load the JSON, and then use it to build the Function and # Tool Call function_call_arr = json.loads(raw_tool_call) tool_calls: List[ToolCall] = [ ToolCall( type="function", function=FunctionCall( name=raw_function_call["name"], # function call args are JSON but as a string arguments=json.dumps(raw_function_call["arguments"]), ), ) for raw_function_call in function_call_arr ] # get any content before the tool call content = model_output.split(self.bot_token)[0] return ExtractedToolCallInformation( tools_called=True, tool_calls=tool_calls, content=content if len(content) > 0 else None, ) except Exception as e: logger.error(f"Error in extracting tool call from response: {e}") # return information to just treat the tool call as regular JSON return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) def extract_tool_calls_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], ) -> Union[DeltaMessage, None]: # if the tool call token is not in the tokens generated so far, append # output to contents since it's not a tool if self.bot_token not in current_text: return DeltaMessage(content=delta_text) # if the tool call token ID IS in the tokens generated so far, that # means we're parsing as tool calls now # handle if we detected the BOT token which means the start of tool # calling if self.bot_token_id in delta_token_ids and len(delta_token_ids) == 1: # if it's the only token, return None, so we don't send a chat # completion any don't send a control token return None # bit mask flags for partial JSON parsing. If the name hasn't been # sent yet, don't allow sending # an incomplete string since OpenAI only ever (as far as I have # seen) allows sending the entire tool/ function name at once. flags = ( Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR ) try: # replace BOT token with empty string, and convert single quotes # to double to allow parsing as JSON since mistral uses single # quotes instead of double for tool calls parsable_arr = current_text.split(self.bot_token)[-1] # tool calls are generated in an array, so do partial JSON # parsing on the entire array try: tool_call_arr: List[Dict] = partial_json_parser.loads( parsable_arr, flags ) except partial_json_parser.core.exceptions.MalformedJSON: logger.debug("not enough tokens to parse into JSON yet") return None # select as the current tool call the one we're on the state at current_tool_call: Dict = ( tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {} ) # case -- if no tokens have been streamed for the tool, e.g. # only the array brackets, stream nothing if len(tool_call_arr) == 0: return None # case: we are starting a new tool in the array # -> array has > 0 length AND length has moved past cursor elif ( len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1 ): # if we're moving on to a new call, first make sure we # haven't missed anything in the previous one that was # auto-generated due to JSON completions, but wasn't # streamed to the client yet. if self.current_tool_id >= 0: diff: Union[str, None] = current_tool_call.get("arguments") if diff: diff = json.dumps(diff).replace( self.streamed_args_for_tool[self.current_tool_id], "", ) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=diff ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += diff else: delta = None else: delta = None # re-set stuff pertaining to progress in the current tool self.current_tool_id = len(tool_call_arr) - 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") logger.debug(f"starting on new tool {self.current_tool_id}") return delta # case: update an existing tool - this is handled below # if the current tool name hasn't been sent, send if available # - otherwise send nothing if not self.current_tool_name_sent: function_name = current_tool_call.get("name") if function_name: delta = DeltaMessage(tool_calls=[ DeltaToolCall(index=self.current_tool_id, type="function", id=f"chatcmpl-tool-{random_uuid()}", function=DeltaFunctionCall( name=function_name).model_dump( exclude_none=True)) ]) self.current_tool_name_sent = True else: delta = None # now we know we're on the same tool call and we're streaming # arguments else: prev_arguments = self.prev_tool_call_arr[ self.current_tool_id ].get("arguments") cur_arguments = current_tool_call.get("arguments") new_text = delta_text.replace("'", '"') if not cur_arguments and not prev_arguments: delta = None elif not cur_arguments and prev_arguments: logger.error( "INVARIANT - impossible to have arguments reset " "mid-arguments" ) delta = None elif cur_arguments and not prev_arguments: cur_arguments_json = json.dumps(cur_arguments) logger.debug( f"finding {new_text} in {cur_arguments_json}" ) arguments_delta = cur_arguments_json[ : cur_arguments_json.index(new_text) + len(new_text) ] logger.debug( f"First tokens in arguments received: {arguments_delta}" ) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=arguments_delta ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += arguments_delta elif cur_arguments and prev_arguments: cur_args_json = json.dumps(cur_arguments) prev_args_json = json.dumps(prev_arguments) logger.debug( f"Searching for diff between \n{cur_args_json}\n" f"{prev_args_json}" ) argument_diff = extract_intermediate_diff( cur_args_json, prev_args_json ) logger.debug(f"got arguments diff: {argument_diff}") delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=argument_diff ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff else: # try parsing it with regular JSON - if it works we're # at the end, and we need to send the difference between # tokens streamed so far and the valid JSON delta = None # check to see if the name is defined and has been sent. if so, # stream the name - otherwise keep waiting # finish by setting old and returning None as base case self.prev_tool_call_arr = tool_call_arr return delta except Exception as e: logger.error(f"Error trying to handle streaming tool call: {e}") logger.debug( "Skipping chunk as a result of tool streaming extraction " "error" ) return None