""" Attention layer with torch scaled_dot_product_attention and PagedAttention.""" from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Type import torch from aphrodite._ipex_ops import ipex_ops from aphrodite.attention.backends.abstract import (AttentionBackend, AttentionImpl, AttentionMetadata, AttentionType) from aphrodite.attention.backends.utils import (CommonAttentionState, CommonMetadataBuilder) from aphrodite.attention.ops.paged_attn import (PagedAttention, PagedAttentionMetadata) _PARTITION_SIZE = 512 class IpexAttnBackend(AttentionBackend): @staticmethod def get_name() -> str: return "ipex-attn" @staticmethod def get_impl_cls() -> Type["IpexAttnBackendImpl"]: return IpexAttnBackendImpl @staticmethod def get_metadata_cls() -> Type["IpexAttnMetadata"]: return IpexAttnMetadata @staticmethod def get_builder_cls() -> Type["IpexAttnMetadataBuilder"]: return IpexAttnMetadataBuilder @staticmethod def get_state_cls() -> Type["CommonAttentionState"]: return CommonAttentionState @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return PagedAttention.get_kv_cache_shape(num_blocks, block_size, num_kv_heads, head_size) @staticmethod def swap_blocks( src_kv_cache: torch.Tensor, dst_kv_cache: torch.Tensor, src_to_dst: torch.Tensor, ) -> None: from aphrodite._ipex_ops import ipex_ops as ops ops.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst) @staticmethod def copy_blocks( kv_caches: List[torch.Tensor], src_to_dists: torch.Tensor, ) -> None: from aphrodite._ipex_ops import ipex_ops as ops key_caches = [kv_cache[0] for kv_cache in kv_caches] value_caches = [kv_cache[1] for kv_cache in kv_caches] ops.copy_blocks(key_caches, value_caches, src_to_dists) @dataclass class IpexAttnMetadata(AttentionMetadata, PagedAttentionMetadata): """Metadata for IpexAttnBackend. """ # Currently, input sequences can only contain all prompts # or all decoding. True if all sequences are prompts. is_prompt: bool slot_mapping: torch.Tensor seq_lens: Optional[List[int]] seqlen_q: Optional[torch.Tensor] max_seqlen: Optional[int] def __post_init__(self): # Set during the execution of the first attention op. # It is a list because it is needed to set per prompt # when alibi slopes is used. It is because of the limitation # from xformer API. # will not appear in the __repr__ and __init__ self.attn_bias: Optional[List[torch.Tensor]] = None @property def prefill_metadata(self) -> Optional["IpexAttnMetadata"]: # Currently chunked prefill is not supported if self.num_decode_tokens == 0: assert self.num_prefills > 0 return self return None @property def decode_metadata(self) -> Optional["IpexAttnMetadata"]: # Currently chunked prefill is not supported if self.num_prefills > 0: assert self.num_decode_tokens == 0 return None return self class IpexAttnMetadataBuilder(CommonMetadataBuilder[IpexAttnMetadata]): _metadata_cls = IpexAttnMetadata class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]): def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: Optional[List[float]], sliding_window: Optional[int], kv_cache_dtype: str, blocksparse_params: Optional[Dict[str, Any]] = None, logits_soft_cap: Optional[float] = None, ) -> None: if blocksparse_params is not None: raise ValueError( "IPEX backend does not support block-sparse attention.") if logits_soft_cap is not None: raise ValueError("IPEX backend does not support logits_soft_cap.") self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) self.num_kv_heads = num_kv_heads if alibi_slopes is not None: alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32) self.alibi_slopes = alibi_slopes self.sliding_window = sliding_window self.kv_cache_dtype = kv_cache_dtype assert self.num_heads % self.num_kv_heads == 0 self.num_queries_per_kv = self.num_heads // self.num_kv_heads self.need_mask = (self.alibi_slopes is not None or self.sliding_window is not None) supported_head_sizes = PagedAttention.get_supported_head_sizes() if head_size not in supported_head_sizes: raise ValueError( f"Head size {head_size} is not supported by PagedAttention. " f"Supported head sizes are: {supported_head_sizes}.") if kv_cache_dtype != "auto": raise NotImplementedError( "IPEX backend does not support FP8 KV cache. " "Please use xFormers backend instead.") def split_kv_cache( self, kv_cache: torch.Tensor, num_kv_heads: int, head_size: int, ) -> Tuple[torch.Tensor, torch.Tensor]: x = 1 num_blocks = kv_cache.shape[1] key_cache = kv_cache[0] key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x, -1, x) value_cache = kv_cache[1] value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1) return key_cache, value_cache def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: Optional[torch.Tensor], attn_metadata: IpexAttnMetadata, # type: ignore k_scale: float = 1.0, v_scale: float = 1.0, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: """Forward pass with IPEX varlen_attention and PagedAttention. Args: query: shape = [num_tokens, num_heads * head_size] key: shape = [num_tokens, num_kv_heads * head_size] value: shape = [num_tokens, num_kv_heads * head_size] kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] attn_metadata: Metadata for attention. Returns: shape = [num_tokens, num_heads * head_size] """ assert k_scale == 1.0 and v_scale == 1.0 if attn_type != AttentionType.DECODER: raise NotImplementedError("Encoder self-attention and " "encoder/decoder cross-attention " "are not implemented for " "IpexAttnBackendImpl") num_tokens, hidden_size = query.shape # Reshape the query, key, and value tensors. query = query.view(-1, self.num_heads, self.head_size) key = key.view(-1, self.num_kv_heads, self.head_size) value = value.view(-1, self.num_kv_heads, self.head_size) if kv_cache is not None: key_cache, value_cache = self.split_kv_cache( kv_cache, self.num_kv_heads, self.head_size) ipex_ops.reshape_and_cache( key, value, key_cache, value_cache, attn_metadata.slot_mapping.flatten(), self.kv_cache_dtype, k_scale, v_scale, ) if attn_metadata.is_prompt: assert attn_metadata.seq_lens is not None if (kv_cache is None or attn_metadata.block_tables.numel() == 0): if self.num_kv_heads != self.num_heads: key = key.repeat_interleave(self.num_queries_per_kv, dim=1) value = value.repeat_interleave(self.num_queries_per_kv, dim=1) if attn_metadata.attn_bias is None: if self.alibi_slopes is not None: att_masks = _make_alibi_bias( self.alibi_slopes, query.dtype, attn_metadata.seq_lens) # type: ignore elif self.sliding_window is not None: att_masks = _make_sliding_window_bias( attn_metadata.seq_lens, self.sliding_window, query.dtype) # type: ignore else: att_masks = _make_sliding_window_bias( attn_metadata.seq_lens, None, dtype=query.dtype) attn_metadata.attn_bias = att_masks output = torch.empty( (num_tokens, self.num_heads, self.head_size), dtype=query.dtype, device=query.device) ipex_ops.varlen_attention(query, key, value, output, attn_metadata.seqlen_q, attn_metadata.seqlen_q, attn_metadata.max_seqlen, attn_metadata.max_seqlen, pdropout=0.0, softmax_scale=self.scale, zero_tensors=False, is_causal=True, return_softmax=False, gen_=None) else: # prefix-enabled attention raise RuntimeError( "IPEX backend doesn't support prefix decoding.") else: # Decoding run. max_seq_len = attn_metadata.max_decode_seq_len output = torch.empty_like(query) block_size = value_cache.shape[3] num_seqs, num_heads, head_size = query.shape max_num_partitions = ((max_seq_len + _PARTITION_SIZE - 1) // _PARTITION_SIZE) # NOTE: We use a simple heuristic to decide whether to use # PagedAttention V1 or V2. If the number of partitions is 1, we use # V1 to avoid the overhead of reduction. Also, if the number of # sequences or heads is large, we use V1 since there is enough work # to parallelize. # TODO: Tune this heuristic. # For context len > 8192, use V2 kernel to avoid shared memory # shortage. use_v1 = (max_seq_len <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)) if use_v1: # Run PagedAttention V1. ipex_ops.paged_attention_v1( output, query, key_cache, value_cache, self.num_kv_heads, self.scale, attn_metadata.block_tables, attn_metadata.seq_lens_tensor, block_size, max_seq_len, self.alibi_slopes, self.kv_cache_dtype, k_scale, v_scale, ) else: # Run PagedAttention V2. assert _PARTITION_SIZE % block_size == 0 tmp_output = torch.empty( size=(num_seqs, num_heads, max_num_partitions, head_size), dtype=output.dtype, device=output.device, ) exp_sums = torch.empty( size=(num_seqs, num_heads, max_num_partitions), dtype=torch.float32, device=output.device, ) max_logits = torch.empty_like(exp_sums) ipex_ops.paged_attention_v2( output, exp_sums, max_logits, tmp_output, query, key_cache, value_cache, self.num_kv_heads, self.scale, attn_metadata.block_tables, attn_metadata.seq_lens_tensor, block_size, max_seq_len, self.alibi_slopes, self.kv_cache_dtype, k_scale, v_scale, ) # Reshape the output tensor. return output.view(-1, self.num_heads * self.head_size) def _make_alibi_bias( alibi_slopes: torch.Tensor, dtype: torch.dtype, seq_lens: List[int], ) -> List[torch.Tensor]: attn_biases = [] for seq_len in seq_lens: bias = torch.arange(seq_len, dtype=dtype, device=alibi_slopes.device) # NOTE: HF uses # `bias = bias[None, :].repeat(seq_len, 1)` # here. We find that both biases give the same results, but # the bias below more accurately follows the original ALiBi # paper. bias = bias[None, :] - bias[:, None] num_heads = alibi_slopes.shape[0] bias = bias[None, :].repeat((num_heads, 1, 1)) bias.mul_(alibi_slopes[:, None, None]) inf_mask = torch.empty( (1, seq_len, seq_len), dtype=bias.dtype, device=alibi_slopes.device).fill_(-torch.inf).triu_(diagonal=1) attn_biases.append((bias + inf_mask).to(dtype)) return attn_biases def _make_sliding_window_bias( seq_lens: List[int], window_size: Optional[int], dtype: torch.dtype, ) -> List[torch.Tensor]: attn_biases = [] for seq_len in seq_lens: tensor = torch.full( (1, seq_len, seq_len), dtype=dtype, fill_value=1, ) shift = 0 mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore if window_size is not None: mask = torch.triu(mask, diagonal=shift - window_size + 1) mask = torch.log(mask) attn_biases.append(mask.to(dtype)) return attn_biases