import asyncio import enum import gc import os import socket import subprocess import uuid from collections import OrderedDict, defaultdict from functools import lru_cache, partial from platform import uname from typing import (Any, AsyncIterator, Awaitable, Callable, Dict, Generic, Hashable, List, Optional, Tuple, TypeVar, Union) import psutil import torch from loguru import logger from packaging.version import Version, parse T = TypeVar("T") STR_DTYPE_TO_TORCH_DTYPE = { "half": torch.half, "bfloat16": torch.bfloat16, "float": torch.float, "fp8": torch.uint8, } class Device(enum.Enum): GPU = enum.auto() CPU = enum.auto() class Counter: def __init__(self, start: int = 0) -> None: self.counter = start def __next__(self) -> int: i = self.counter self.counter += 1 return i def reset(self) -> None: self.counter = 0 class LRUCache(Generic[T]): def __init__(self, capacity: int): self.cache = OrderedDict[Hashable, T]() self.capacity = capacity def __contains__(self, key: Hashable) -> bool: return key in self.cache def __len__(self) -> int: return len(self.cache) def __getitem__(self, key: Hashable) -> T: return self.get(key) def __setitem__(self, key: Hashable, value: T) -> None: self.put(key, value) def __delitem__(self, key: Hashable) -> None: self.pop(key) def touch(self, key: Hashable) -> None: self.cache.move_to_end(key) def get(self, key: Hashable, default_value: Optional[T] = None) -> Optional[T]: if key in self.cache: value = self.cache[key] self.cache.move_to_end(key) else: value = default_value return value def put(self, key: Hashable, value: T) -> None: self.cache[key] = value self.cache.move_to_end(key) self._remove_old_if_needed() def _on_remove(self, key: Hashable, value: T): pass def remove_oldest(self): if not self.cache: return key, value = self.cache.popitem(last=False) self._on_remove(key, value) def _remove_old_if_needed(self) -> None: while len(self.cache) > self.capacity: self.remove_oldest() def pop(self, key: Hashable, default_value: Optional[Any] = None) -> T: run_on_remove = key in self.cache value = self.cache.pop(key, default_value) if run_on_remove: self._on_remove(key, value) return value def clear(self): while len(self.cache) > 0: self.remove_oldest() self.cache.clear() def is_hip() -> bool: return torch.version.hip is not None @lru_cache(maxsize=None) def is_cpu() -> bool: from importlib.metadata import PackageNotFoundError, version try: return "cpu" in version("aphrodite-engine") except PackageNotFoundError: return False @lru_cache(maxsize=None) def is_neuron() -> bool: try: import transformers_neuronx except ImportError: transformers_neuronx = None return transformers_neuronx is not None @lru_cache(maxsize=None) def get_max_shared_memory_bytes(gpu: int = 0) -> int: """Returns the maximum shared memory per thread block in bytes.""" # NOTE: This import statement should be executed lazily since # the Neuron-X backend does not have the `cuda_utils` module. from aphrodite._C import cuda_utils max_shared_mem = ( cuda_utils.get_max_shared_memory_per_block_device_attribute(gpu)) # value 0 will cause MAX_SEQ_LEN become negative and test_attention.py # will fail assert max_shared_mem > 0, "max_shared_mem can not be zero" return int(max_shared_mem) def get_cpu_memory() -> int: """Returns the total CPU memory of the node in bytes.""" return psutil.virtual_memory().total def random_uuid() -> str: return str(uuid.uuid4().hex) @lru_cache(maxsize=None) def in_wsl() -> bool: # Reference: https://github.com/microsoft/WSL/issues/4071 return "microsoft" in " ".join(uname()).lower() def make_async(func: Callable[..., T]) -> Callable[..., Awaitable[T]]: """Take a blocking function, and run it on in an executor thread. This function prevents the blocking function from blocking the asyncio event loop. The code in this function needs to be thread safe. """ def _async_wrapper(*args, **kwargs) -> asyncio.Future: loop = asyncio.get_event_loop() p_func = partial(func, *args, **kwargs) return loop.run_in_executor(executor=None, func=p_func) return _async_wrapper def merge_async_iterators( *iterators: AsyncIterator[T]) -> AsyncIterator[Tuple[int, T]]: """Merge multiple asynchronous iterators into a single iterator. This method handle the case where some iterators finish before others. When it yields, it yields a tuple (i, item) where i is the index of the iterator that yields the item. """ queue: asyncio.Queue[Union[Tuple[int, T], Exception]] = asyncio.Queue() finished = [False] * len(iterators) async def producer(i: int, iterator: AsyncIterator[T]): try: async for item in iterator: await queue.put((i, item)) except Exception as e: await queue.put(e) finished[i] = True _tasks = [ asyncio.create_task(producer(i, iterator)) for i, iterator in enumerate(iterators) ] async def consumer(): try: while not all(finished) or not queue.empty(): item = await queue.get() if isinstance(item, Exception): raise item yield item except (Exception, asyncio.CancelledError) as e: for task in _tasks: # NOTE: Pass the error msg in cancel() # when only Python 3.9+ is supported. task.cancel() raise e await asyncio.gather(*_tasks) return consumer() def get_ip() -> str: # try ipv4 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable return s.getsockname()[0] except OSError: # try ipv6 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) s.connect(("dns.google", 80)) return s.getsockname()[0] def get_distributed_init_method(ip: str, port: int) -> str: # Brackets are not permitted in ipv4 addresses, # see https://github.com/python/cpython/issues/103848 return f"tcp://[{ip}]:{port}" if ":" in ip else f"tcp://{ip}:{port}" def get_open_port() -> int: # try ipv4 try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) return s.getsockname()[1] except OSError: # try ipv6 with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s: s.bind(("", 0)) return s.getsockname()[1] def set_cuda_visible_devices(device_ids: List[int]) -> None: os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, device_ids)) def chunk_list(lst, chunk_size): """Yield successive chunk_size chunks from lst.""" return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)] def cdiv(a: int, b: int) -> int: """Ceiling division.""" return -(a // -b) @lru_cache(maxsize=None) def get_nvcc_cuda_version() -> Optional[Version]: cuda_home = os.environ.get('CUDA_HOME') if not cuda_home: cuda_home = '/usr/local/cuda' if os.path.isfile(cuda_home + '/bin/nvcc'): logger.info( f'CUDA_HOME is not found in the environment. Using {cuda_home} ' 'as CUDA_HOME.') else: logger.warning( f'Not found nvcc in {cuda_home}. Skip cuda version check!') return None nvcc_output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True) output = nvcc_output.split() release_idx = output.index("release") + 1 nvcc_cuda_version = parse(output[release_idx].split(",")[0]) return nvcc_cuda_version def _generate_random_fp8( tensor: torch.tensor, low: float, high: float, ) -> None: # NOTE: Due to NaN and Inf representation for fp8 data type, # we may get Inf or NaN if we directly use torch.randint # to generate random data for fp8 data. # For example, s.11111.00 in fp8e5m2 format represents Inf. # | E4M3 | E5M2 #-----|-------------|------------------- # Inf | N/A | s.11111.00 # NaN | s.1111.111 | s.11111.{01,10,11} from aphrodite._C import cache_ops tensor_tmp = torch.empty_like(tensor, dtype=torch.float16) tensor_tmp.uniform_(low, high) cache_ops.convert_fp8(tensor_tmp, tensor) del tensor_tmp def create_kv_caches_with_random( num_blocks: int, block_size: int, num_layers: int, num_heads: int, head_size: int, cache_dtype: Optional[Union[str, torch.dtype]], model_dtype: Optional[Union[str, torch.dtype]] = None, seed: Optional[int] = 0, device: Optional[str] = "cuda", ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) if isinstance(cache_dtype, str): if cache_dtype == "auto": if isinstance(model_dtype, str): torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype] elif isinstance(model_dtype, torch.dtype): torch_dtype = model_dtype else: raise ValueError(f"Invalid model dtype: {model_dtype}") elif cache_dtype in ["half", "bfloat16", "float"]: torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype] elif cache_dtype == "fp8": torch_dtype = torch.uint8 else: raise ValueError(f"Invalid kv cache dtype: {cache_dtype}") elif isinstance(cache_dtype, torch.dtype): torch_dtype = cache_dtype else: raise ValueError(f"Invalid kv cache dtype: {cache_dtype}") scale = head_size**-0.5 x = 16 // torch.tensor([], dtype=torch_dtype).element_size() key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x) key_caches = [] for _ in range(num_layers): key_cache = torch.empty(size=key_cache_shape, dtype=torch_dtype, device=device) if cache_dtype in ["auto", "half", "bfloat16", "float"]: key_cache.uniform_(-scale, scale) elif cache_dtype == 'fp8': _generate_random_fp8(key_cache, -scale, scale) else: raise ValueError( f"Does not support key cache of type {cache_dtype}") key_caches.append(key_cache) value_cache_shape = (num_blocks, num_heads, head_size, block_size) value_caches = [] for _ in range(num_layers): value_cache = torch.empty(size=value_cache_shape, dtype=torch_dtype, device=device) if cache_dtype in ["auto", "half", "bfloat16", "float"]: value_cache.uniform_(-scale, scale) elif cache_dtype == 'fp8': _generate_random_fp8(value_cache, -scale, scale) else: raise ValueError( f"Does not support value cache of type {cache_dtype}") value_caches.append(value_cache) return key_caches, value_caches @lru_cache def print_warning_once(msg: str) -> None: logger.warning(msg) @lru_cache(maxsize=None) def is_pin_memory_available() -> bool: if in_wsl(): # Pinning memory in WSL is not supported. # https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications print_warning_once("Using 'pin_memory=False' as WSL is detected. " "This may slow down the performance.") return False elif is_neuron(): print_warning_once("Pin memory is not supported on Neuron.") return False elif is_cpu(): return False return True class CudaMemoryProfiler: def __init__(self, device=None): self.device = device def current_memory_usage(self) -> float: # Return the memory usage in bytes. torch.cuda.reset_peak_memory_stats(self.device) mem = torch.cuda.max_memory_allocated(self.device) return mem def __enter__(self): self.initial_memory = self.current_memory_usage() # This allows us to call methods of the context manager if needed return self def __exit__(self, exc_type, exc_val, exc_tb): self.final_memory = self.current_memory_usage() self.consumed_memory = self.final_memory - self.initial_memory # Force garbage collection gc.collect() def str_to_int_tuple(s: str) -> Tuple[int]: """Convert a string to a tuple of integers.""" try: return tuple(map(int, s.split(","))) except ValueError as e: raise ValueError( "String must be a series of integers separated by commas " f"(e.g., 1, 2, 3). Given input: {s}") from e def pad_to_max_length(x: List[int], max_len: int, pad: int) -> List[int]: assert len(x) <= max_len return x + [pad] * (max_len - len(x)) def make_tensor_with_pad( x: List[List[int]], max_len: int, pad: int, dtype: torch.dtype, device: Optional[Union[str, torch.device]], ) -> torch.Tensor: """Make a padded tensor of a 2D inputs. The padding is applied to the end of each inner list until it reaches `max_len`. """ padded_x = [pad_to_max_length(x_i, max_len, pad) for x_i in x] return torch.tensor(padded_x, dtype=dtype, device=device) def async_tensor_h2d( data: list, dtype: torch.dtype, target_device: Union[str, torch.device], pin_memory: bool, ) -> torch.Tensor: """Asynchronously create a tensor and copy it from host to device.""" t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu") return t.to(device=target_device, non_blocking=True) def maybe_expand_dim(tensor: torch.Tensor, target_dims: int, size: int = 1) -> torch.Tensor: """Expand the tensor to the target_dims.""" if tensor.ndim < target_dims: tensor = tensor.view(-1, *([size] * (target_dims - tensor.ndim))) return tensor def merge_dicts(dict1: Dict[Any, List[Any]], dict2: Dict[Any, List[Any]]) -> Dict[Any, List[Any]]: """Merge 2 dicts that have key -> List of items. When a key conflicts, the values in dict1 is prioritized. """ merged_dict = defaultdict(list) for key, value in dict1.items(): merged_dict[key].extend(value) for key, value in dict2.items(): merged_dict[key].extend(value) return dict(merged_dict)