"""Attention layer.""" from typing import List, Optional import torch import torch.nn as nn from aphrodite.attention.backends.abstract import (AttentionMetadata, AttentionMetadataPerStage) from aphrodite.attention.selector import get_attn_backend class Attention(nn.Module): """Attention layer. This class takes query, key, and value tensors as input. The input tensors can either contain prompt tokens or generation tokens. The class does the following: 1. Store the input key and value tensors in the KV cache. 2. Perform (multi-head/multi-query/grouped-query) attention. 3. Return the output tensor. """ def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: Optional[int] = None, alibi_slopes: Optional[List[float]] = None, sliding_window: Optional[int] = None, ) -> None: super().__init__() self.backend = get_attn_backend(torch.get_default_dtype()) impl_cls = self.backend.get_impl_cls() self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads, alibi_slopes, sliding_window) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: Optional[torch.Tensor], attn_metadata: AttentionMetadata[AttentionMetadataPerStage], kv_scale: float = 1.0, ) -> torch.Tensor: return self.impl.forward(query, key, value, kv_cache, attn_metadata, kv_scale)