#include "cache.h" #include "cuda_utils.h" #include "ops.h" #include PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { // Aphrodite custom ops pybind11::module ops = m.def_submodule("ops", "Aphrodite custom operators"); // Attention ops ops.def( "paged_attention_v1", &paged_attention_v1, "Compute the attention between an input query and the cached keys/values using PagedAttention."); ops.def( "paged_attention_v2", &paged_attention_v2, "PagedAttention V2."); // Activation ops ops.def( "silu_and_mul", &silu_and_mul, "Activation function used in SwiGLU."); ops.def( "gelu_and_mul", &gelu_and_mul, "Activation function used in GeGLU with `none` approximation."); ops.def( "gelu_tanh_and_mul", &gelu_tanh_and_mul, "Activation function used in GeGLU with `tanh` approximation."); ops.def( "gelu_new", &gelu_new, "GELU implementation used in GPT-2."); ops.def( "gelu_fast", &gelu_fast, "Approximate GELU implementation."); // Layernorm ops.def( "rms_norm", &rms_norm, "Apply Root Mean Square (RMS) Normalization to the input tensor."); ops.def( "fused_add_rms_norm", &fused_add_rms_norm, "In-place fused Add and RMS Normalization"); // Rotary embedding ops.def( "rotary_embedding", &rotary_embedding, "Apply GPT-NeoX or GPT-J style rotary embedding to query and key"); ops.def( "batched_rotary_embedding", &batched_rotary_embedding, "Apply batched GPT-NeoX or GPT-J style rotary embedding to query and key"); ops.def("moe_align_block_size", &moe_align_block_size, "Aligning the number of tokens to be processed by each expert such that it is divisible by the block size."); // Cache ops pybind11::module cache_ops = m.def_submodule("cache_ops", "Aphrodite cache ops"); cache_ops.def( "swap_blocks", &swap_blocks, "Swap in (out) the cache blocks from src to dst"); cache_ops.def( "copy_blocks", ©_blocks, "Copy the cache blocks from src to dst"); cache_ops.def( "reshape_and_cache", &reshape_and_cache, "Reshape the key and value tensors and cache them"); cache_ops.def( "convert_fp8", &convert_fp8, "Convert the key and value cache to fp8 data type"); // Cuda utils pybind11::module cuda_utils = m.def_submodule("cuda_utils", "Aphrodite cuda utils"); cuda_utils.def( "get_device_attribute", &get_device_attribute, "Gets the specified device attribute."); cuda_utils.def( "get_max_shared_memory_per_block_device_attribute", &get_max_shared_memory_per_block_device_attribute, "Gets the maximum shared memory per block device attribute."); #ifndef USE_ROCM // Custom all-reduce kernels pybind11::module custom_ar = m.def_submodule("custom_ar", "custom allreduce"); custom_ar.def("init_custom_ar", &init_custom_ar, "init_custom_ar"); custom_ar.def("should_custom_ar", &should_custom_ar, "should_custom_ar"); custom_ar.def("all_reduce_reg", &all_reduce_reg, "all_reduce_reg"); custom_ar.def("all_reduce_unreg", &all_reduce_unreg, "all_reduce_unreg"); custom_ar.def("dispose", &dispose, "dispose"); custom_ar.def("meta_size", &meta_size, "meta_size"); custom_ar.def("register_buffer", ®ister_buffer, "register_buffer"); custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta, "get_graph_buffer_ipc_meta"); custom_ar.def("register_graph_buffers", ®ister_graph_buffers, "register_graph_buffers"); #endif }